\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S1 (Special Improvement) Examination January 2021 (2019 scheme)

Course Code: MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS
 (2019-Scheme)

Max. Marks: 100
Duration: 3 Hours
PART A
Answer all questions, each carries 3 marks.
1
Determine the rank of the matrix $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 3 & -1 \\ 5 & 3 & -2\end{array}\right]$
$7 x_{1}^{2}+6 x_{1} x_{2}+7 x_{2}^{2}=200$ Transform it into canonical form.
Find the derivative of $w=x^{2}+y^{2}$ with respect to t along the
path $x=a t^{2}, y=2 a t$.
4
Let $f(x, y)=\sqrt{3 x+2 y}$, find the slope of the surface $z=f(x, y)$ in the
y-direction at the point $(2,5)$.
5
Evaluate $\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}(y z+x z+x y) d x d y d z$
Use polar co-ordinates to evaluate
$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x$
7
Test the convergence of $\sum_{k=1}^{\infty} \frac{1}{(2 k+3)^{17}}$
8
Examine whether the series convergence or not $\sum_{k=1}^{\infty} \frac{1}{(\ln (k+1))^{k}}$

9
Find the Maclaurin series of $\frac{1}{x+1}$ up to third degree term.
Find the Fourier Half Range sine series of $f(x)=x$ in, $0<x<\pi$.

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

11 a) Test for consistency and solve the system of equations

$$
\begin{gather*}
x+2 y-z=3 \tag{7}\\
3 x-y+2 z=1 \\
2 x-2 y+3 z=2 \\
x-y+z=-1 \tag{7}
\end{gather*}
$$

b) Find the eigenvalues and eigenvectors of $\left[\begin{array}{ccc}1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]$

12 a) For what values of a and b do the system of equations

$$
\begin{align*}
& x+y+z=6 \tag{7}\\
& x+2 y+3 z=10 \\
& x+2 y+a z=b
\end{align*}
$$

have i) no solution ii) unique solution iii) more than one solution.
b) Find the matrix of transformation that diagonalize the matrix
$A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$. Also write the diagonal matrix.

Module-II

13 a)

$$
\begin{equation*}
\text { If If } u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right) \text { find the value of } x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z} \text {. } \tag{7}
\end{equation*}
$$

b) If the local linear approximation of a function $f(x, y, z)=x y+z^{2}$ at a point P is $L(x, y, z)=y+2 z-x$, find the point P .

14 a) If $z=e^{x y}, x=2 u+v, y=\frac{u}{v} \quad$ find $\frac{\partial z}{\partial u}$.
b) Locate all relative extrema of $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$.

Module-III

15
a) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$ by reversing the order of integration.
b) Using triple integral find the volume of the solid in the first octant bounded by the coordinate planes and the plane $x+2 y+z=6$.

16 a) Find the mass and center of gravity of the triangular lamina with vertices $(0,0),(0,1)$ and $(1,0)$ and density function $\delta(x, y)=x y$
b) Evaluate $\iint_{R} x^{2} d y d x$,where R is the region between $y=x$ and $y=x^{2}$

Module-IV

17 a) Discuss the convergence of the series
(i) $\sum_{k=1}^{\infty} \frac{k!}{k^{k}}$
(ii) $\sum_{k=1}^{\infty}\left(\frac{k}{k+1}\right)^{k^{2}}$
b) Examine the convergence and divergence of the series
$\frac{x}{1.3}+\frac{x^{2}}{3.5}+\frac{x^{3}}{5.7}+\ldots \ldots$

18 a) Test the convergence of $1+\frac{1.3}{3!}+\frac{1.3 \cdot 5}{5!}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{7!}+\ldots \ldots \ldots$.
b) Prove that the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(k-2)}{k(k+1)}$ is conditionally convergent.

Module-V

19 a) Obtain Fourier series for the function $f(x)=|\sin x|-\pi<x<\pi$
b)

If $f(x)=\left\{\begin{array}{c}k x ; 0<x<\frac{\pi}{2} \\ k(\pi-x) ; \frac{\pi}{2}<x<\pi\end{array}\right.$ then show that $f(x)=\frac{4 k}{\pi}\left(\frac{\sin x}{1^{2}}-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}----\right)$.
20 a) Find the Fourier cosine series of $f(x)=x^{2}$ in $(0, \pi)$. Hence show that
$1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+---=\frac{\pi^{2}}{6}$
b) Find the Fourier series for the function

$$
\begin{align*}
f(x) & =x & & 0<x<1 \tag{7}\\
& =1-x & & 1<x<2
\end{align*}
$$

