Reg No.:_

Name:__

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

Course Code: EC368 Course Name: ROBOTICS

Max. Marks: 100

Duration: 3 Hours

(6)

PART A

		Answer any two full questions, each carries 15 marks	Marks
1	a)	Define the term degrees of freedom and explain six degrees of freedom	(8)
		associated with robot.	
	b)	Describe the TLL robot configuration with neat sketch.	(7)
2	a)	Illustrate the working of strain gauge-based force sensor using Wheatstone	(8)
		bridge setup.	
	b)	Compare hydraulic, electric, and pneumatic actuators.	(7)
3	a)	With the help of torque speed characteristic explain the working of servomotor.	(7)
	b)	Explain different types of joints with the help of neat sketches.	(8)
		PART B	
		Answer any two full questions, each carries 15 marks	
4	a)	Explain the functions of a machine vision system with the help of block diagram	(10)
	b)	Find the new location of point $P(1, 2,3)^{T}$ relative to the reference frame after a	(5)
		rotation of 30^0 about the z-axis followed by a rotation of 60^0 about the y-axis.	
5	a)	A frame <i>B</i> is rotated 90 ⁰ about the <i>z</i> -axis, then translated 3 and 5 units relative to	(8)
		the n and a area respectively, then retated enother 00^0 shout the n axis and	

the *n* and *o*-axes respectively, then rotated another 90^o about the *n*-axis, and finally, 90° about the y-axis. Find the new location and orientation of the frame

$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- b) Explain the steps to be followed for the implementation of Denavit- Hartenberg (7)representation.
- 6 a) Explain the three phases involved in analog to digital signal conversion. (9)
 - b) Derive the matrix representing RPY orientation.

03000EC368052101

PART C

Answer any two juli questions, each curries 20 main	Answer any tw	o full questions.	each carries 20	marks
---	---------------	-------------------	-----------------	-------

7	a)	Derive the Jacobian operator for linear and angular velocity of end-effector.		
	b) Explain about Lagrangian mechanics. How will you derive dynamic mode			
		robot?		
	c)	What is PID control? What are the main advantages of PID control?	(5)	
8	a)	Explain the robot language structure with a block diagram.		
	b)	Distinguish textual and lead through programming.	(5)	
	c)	Mention end-effector and motion commands in VAL programming language.	(5)	
9	a)	Explain in detail about different control schemes of robots.	(10)	
	b)	Explain the use of robots in industrial applications.	(10)	
