Reg No.:_____

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1,S2 (S,FE) Examination May 2021 (2015 Scheme)

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100

Duration: 3 Hours

	PART A	
	Answer all Questions. Each question carries 3 Marks	Marks
1	Solve the ODE, $y''' + y = 0$	(3)
2	Show that e^{3x} and e^{2x} are linearly independent solutions of $y'' - 5y' + 6y = 0$	(3)
2	0	
3	Solve, $(D^2 + 3D + 2)y = 5$	(3)
4	Using a suitable transformation, convert the differential equation	(3)
	$(1+x)^2y'' + (1+x)y' = (2x+3)(2x+4)$ into a linear differential equation	
	with constant coefficients	
5	Represent the function $f(x) = x^2$ as a Fourier series in the interval $(-\pi, \pi)$	(3)
6	Find the half range Fourier sine series of $f(x) = e^x$ in $0 < x < 1$	(3)
7	Form a PDE by eliminating the arbitrary function from $z = y^2 + 2f(\frac{1}{x} + \log y)$	(3)
8	Find the P.I. of $(D^2 - 5DD' + 4{D'}^2)z = \sin(4x + y)$	(3)
9	Solve $x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$ using method of separation of variables.	(3)
10	A tightly stretched flexible string has its ends at $x = 0$ and $x = l$. At time	(3)
	t = 0,	
	the string is given a shape defined by $f(x) = \mu x(l - x)$, where μ is a constant,	
	and then released. Write the boundary and initial conditions	
11	Write down the possible solutions of one dimensional heat equation.	(3)
12	The ends A and B of a rod of length l have the temperature a^0C and b^0C	(3)
	respectively until steady state conditions prevail. Find the initial temperature	
	distribution of the rod.	

01000MA102032103

PART B

Answer six questions, one full question from each module

Module I

- 13 a) Find a basis of solutions of the ODE, $x^2y'' + xy' 4y = 0$. Given $y_1 = x^2$ is (6) one solution.
 - b) Determine all possible solutions to the initial value problem, $y' = 1 + y^2$, (5) y(0) = 0 in the interval |x| < 3, and |y| < 2

OR

- 14 a) Verify by substitution that y₁ = e^{-x}cosx and y₂ = e^{-x}sinx are the solutions (6) of the given ODE and then solve the initial value problem, y" + 2y' + 2y = 0, y(0) = 0, y'(0) = 15
 - b) Find the general solution of $y^{i\nu} 2y^{\prime\prime\prime} + 2y^{\prime\prime} 2y^{\prime} + y = 0$ (5)

Module II

15 a) Solve, by the method of variation of parameters ,
$$(D^2 + 1)y = cosecx$$
 (6)

b) Solve, $(D^3 - D^2 - 6D)y = x^2 + 1$

OR

(5)

(6)

16 a) Solve,
$$(D^2 - 2D + 5)y = e^{2x}sinx$$

b) Solve,
$$x^2 \frac{d^3 y}{dx^3} - 4x \frac{d^2 y}{dx^2} + 6 \frac{dy}{dx} = 4$$
 (5)

Module III

17 Find the Fourier series of
$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ sinx, & 0 < x < \pi \end{cases}$$
 (11)

OR

18 a) Find the Fourier series of
$$f(x) = \begin{cases} \pi x, & 0 < x < 1 \\ \pi(2-x), & 1 < x < 2 \end{cases}$$
 (6)

b) Obtain the half range Fourier cosine series of $f(x) = (x - 1)^2$, 0 < x < 1. (5) Show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{\pi^2}{6}$

Module IV

19 a) Solve,
$$r - 4s + 4t = e^{2x+y}$$
 (6)
b) Solve, $(2z - y)p + (x + z)q = -2x - y$ (5)
OR

20 a) Solve,
$$(D^2 - 2DD' - 15{D'}^2)z = 12xy$$
 (6)

b) Find the PDE of all planes cutting equal intercepts from the X and Y axes. (5)

01000MA102032103

Module V

- 21 a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$, where (5) $u(x, 0) = 6e^{-3x}$.
 - b) Find the displacement of a finite string of length L that is fixed at both ends and (5) is released from rest with an initial displacement f(x).

OR

22 Derive one dimensional wave equation.

(10)

Module VI

A rod of length *l* is heated so that its ends A and B are at zero temperature. If (10) initially its temperature is given by $u = \frac{cx(l-x)}{l^2}$, find the temperature distribution at time t.

OR

A long iron rod, with insulated lateral surface has its left end maintained at a (10) temperature of $0^{\circ}C$ and its right end at x = 2 maintained at $100^{\circ}C$. Determine the temperature as a function of x and t if the initial temperature is

 $u(x,t) = \begin{cases} 100x, \ 0 < x < 1\\ 100, \ 1 < x < 2 \end{cases}$

