\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1,S2 (S,FE) Examination May 2021 (2015 Scheme)

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all Questions. Each question carries 3 Marks

1 Solve the ODE, $y^{\prime \prime \prime}+y=0$

Show that $e^{3 x}$ and $e^{2 x}$ are linearly independent solutions of $y^{\prime \prime}-5 y^{\prime}+6 y=$ 0

Solve, $\left(D^{2}+3 D+2\right) y=5$
Using a suitable transformation, convert the differential equation
$(1+x)^{2} y^{\prime \prime}+(1+x) y^{\prime}=(2 x+3)(2 x+4)$ into a linear differential equation with constant coefficients

Represent the function $f(x)=x^{2}$ as a Fourier series in the interval $(-\pi, \pi)$
Find the half range Fourier sine series of $f(x)=e^{x}$ in $0<x<1$
Form a PDE by eliminating the arbitrary function from $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$
Find the P.I. of $\left(D^{2}-5 D D^{\prime}+4 D^{\prime 2}\right) z=\sin (4 x+y)$
Solve $x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0$ using method of separation of variables.
A tightly stretched flexible string has its ends at $x=0$ and $x=l$. At time $t=0$,
the string is given a shape defined by $f(x)=\mu x(l-x)$, where μ is a constant, and then released. Write the boundary and initial conditions
Write down the possible solutions of one dimensional heat equation.
The ends A and B of a rod of length l have the temperature $a^{0} C$ and $b^{0} C$
respectively until steady state conditions prevail. Find the initial temperature distribution of the rod.

01000MA102032103

PART B

Answer six questions, one full question from each module

Module I

13 a) Find a basis of solutions of the ODE, $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0$. Given $y_{1}=x^{2}$ is one solution.
b) Determine all possible solutions to the initial value problem, $y^{\prime}=1+y^{2}$,
$y(0)=0$ in the interval $|x|<3$, and $|y|<2$
OR
14 a) Verify by substitution that $y_{1}=e^{-x} \cos x$ and $y_{2}=e^{-x} \sin x$ are the solutions of the given ODE and then solve the initial value problem, $y^{\prime \prime}+2 y^{\prime}+2 y=0$, $y(0)=0, y^{\prime}(0)=15$
b) Find the general solution of $y^{i v}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}-2 y^{\prime}+y=0$

Module II

15 a) Solve, by the method of variation of parameters, $\left(D^{2}+1\right) y=\operatorname{cosec} x$
b) Solve, $\left(D^{3}-D^{2}-6 D\right) y=x^{2}+1$

OR

16 a) Solve, $\left(D^{2}-2 D+5\right) y=e^{2 x} \sin x$
b) Solve, $x^{2} \frac{d^{3} y}{d x^{3}}-4 x \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=4$

Module III

17 Find the Fourier series of $f(x)=\left\{\begin{array}{lr}0, & -\pi<x<0 \\ \sin x, & 0<x<\pi\end{array}\right\}$

OR

18 a) Find the Fourier series of $f(x)=\left\{\begin{array}{ll}\pi x, & 0<x<1 \\ \pi(2-x), & 1<x<2\end{array}\right\}$
b) Obtain the half range Fourier cosine series of $f(x)=(x-1)^{2}, 0<x<1$.

Show that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ \qquad $=\frac{\pi^{2}}{6}$

Module IV

19 a) Solve, $r-4 s+4 t=e^{2 x+y}$
b) Solve, $(2 z-y) p+(x+z) q=-2 x-y$

OR
20
a) Solve, $\left(D^{2}-2 D D^{\prime}-15 D^{\prime 2}\right) z=12 x y$
b) Find the PDE of all planes cutting equal intercepts from the X and Y axes.

01000MA102032103

Module V

21 a) Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $u(x, 0)=6 e^{-3 x}$.
b) Find the displacement of a finite string of length L that is fixed at both ends and is released from rest with an initial displacement $f(x)$.

OR

Derive one dimensional wave equation.

Module VI

A rod of length l is heated so that its ends A and B are at zero temperature. If initially its temperature is given by $u=\frac{c x(l-x)}{l^{2}}$, find the temperature distribution at time t .

OR

A long iron rod, with insulated lateral surface has its left end maintained at a temperature of $0^{\circ} \mathrm{C}$ and its right end at $x=2$ maintained at $100^{\circ} \mathrm{C}$. Determine the temperature as a function of x and t if the initial temperature is

$$
u(x, t)=\left\{\begin{array}{l}
100 x, \quad 0<x<1 \\
100, \\
1<x<2
\end{array}\right\}
$$

