Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

Course Code: EC304

Course Name: VLSI
Max. Marks: 100
Duration: 3 Hours
PART A
Answer any two full questions, each carries 15 marks

Marks

1 a) With a neat sketch, explain Czochralski crystal growth mechanism.
b) Explain the N-well CMOS IC Fabrication Sequence.

2 a) After a pre-deposition step, it is found that 5×10^{15} phosphorus atoms cm^{-2} are introduced in a p-type silicon sample doped with 10^{16} acceptor atoms cm^{-3}. Calculate the junction depth, when the drive-in diffusion is performed at $1200^{\circ} \mathrm{C}$ for two hours. $\left(\mathrm{D}=2.5 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{s}\right.$ at $\left.1200^{0} \mathrm{C}\right)$.
b) With a neat sketch, explain the process of vapour phase epitaxy.

3 a) Solve the Fick's law of diffusion, corresponding to pre-deposition diffusion and drive in diffusion.
b) Explain the process of molecular beam epitaxy (MBE) in detail.

PART B
Answer any two full questions, each carries 15 marks
4 a) Explain the various types of power dissipation in CMOS inverter.
b) Realize an XNOR gate using
i. NMOS pass transistor logic
ii. Complementary pass transistor logic

5 a) Draw the circuit diagram, stick diagram and layout of a CMOS NOR gate
b) Implement the function $\mathrm{Y}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime}$ and $\mathrm{Z}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ using pass transistor logic.

6 a) Explain the working of a transmission gate and implement 4×1 multiplexer using transmission gates.
b) Implement the function $\mathrm{Y}=[(\mathrm{A}+\mathrm{B}) \mathrm{C}+\mathrm{DE}]^{\prime}$, using static CMOS logic

PART C
Answer any two full questions, each carries 20 marks
7 a) Explain the read and write operation of a six transistor CMOS SRAM cell.

03000EC304052001

b) With block diagrams, explain the working of linear carry select adder and square root carry select adder.

8 a) Design a 4-bit $\times 4$-bit NAND-based ROM array and explain its working.
b) With necessary diagrams and equations, explain the design of carry bypass adders

9 a) Draw a neat block diagram and discuss the operation of 4×4 bit-array multiplier.
b) Design a 4-bit $\times 4$-bit NOR-based ROM array and explain its working.

