Reg No.:__

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree Regular and Supplementary Examination July 2021

Course Code: EE302 Course Name: ELECTROMAGNETICS

Max. Marks: 100		Tarks: 100 Duration: 3	Duration: 3 Hours	
		PART A	Marks	
		Answer all questions, each carries 5 marks.		
1		State Stoke's theorem and explain its significance.	(5)	
2		The region between two concentric right circular cylinders contains a uniform	(5)	
		volume charge density ρ . Solve the Poisson's equation for the potential in the		
		region.		
3		State Ampere's circuital law and using it derive the expression for magnetic	(5)	
		field intensity around an infinitely long straight current carrying conductor		
4		What is electric polarization? How dielectrics are classified based on	(5)	
		polarization?		
5		Using Poynting Theorem derive an expression for power flow in a co-axial	(5)	
		cable		
6		What are uniform plane waves? Explain.	(5)	
7		Explain phase velocity and group velocity.	(5)	
8		What is skin depth? Explain.	(5)	
		PART B		
		Answer any two full questions, each carries 10 marks.		
9		Verify divergence theorem for the vector field $\mathbf{D}=2\rho z^2 a_{\rho} + \rho cos^2 \Phi a_z$ over the	(10)	
		region defined by $0 \le \rho \le 5$, $-1 \le z \le 1$ and $0 \le \Phi \le 2\pi$.		
10	a)	State and prove Gauss's Law.	(4)	
	b)	A circular ring of radius a carries a uniform charge ρ_L C/m and is placed on the	(6)	
		xy-plane and centerd at origin. Derive an expression for electric field intensity		
		at a point (0, 0, h) on the axis of the ring.		
11	a)	Explain the physical significance of gradient of a scalar quantity and curl of a	(5)	
		vector quantity.		
	b)	What is an equipotential surface? What are its properties?	(5)	

b) What is an equipotential surface? What are its properties?

03000EE302052004

PART C

Answer any two full questions, each carries 10 marks.

- 12 State and explain Biot-Savart Law. Apply Biot-Savart's Law to derive an (10) expression for magnetic field intensity due to a straight current carrying conductor of finite length.
- 13 a) Apply amperes circuital law to find magnetic field intensity due to an infinitely (5) long straight conductor.
 - b) From Faraday's Law, derive Maxwell's Equations in Differential and integral (5) form.
- 14 Derive an expression for electrostatic energy in terms of electric field intensity. (10)

PART D

Answer any two full questions, each carries 10 marks.

- 15 From Maxwell's equations, derive wave equations for free space. Also write (10) wave equations in phasor form.
- 16 a) Explain about electromagnetic interference and electromagnetic compatibility. (5)
 - b) A uniform plane wave in free space is given by (5) $\mathbf{E}=10.4 \times 10^{-6} e^{j(2\pi \times 10^9 t - \beta x)} a_y \text{V/m. Find (i) Direction of propagation (ii) wave velocity (iii) Phase constant <math>\beta$
- 17 For a lossy dielectric material having $\mu_r = 1$, $\varepsilon_r = 48$, $\sigma = 20\Omega^{-1}m^{-1}$. At a (10) frequency of 16 GHz, calculate the (i) propagation constant (ii) attenuation constant (iii) phase constant and (iv) wavelength

