Reg No.:___

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: CST203

Course Name: LOGIC SYSTEM DESIGN

l	Max. Marks: 100 Duration: 3	B Hours	
	PART A Answer all questions. Each question carries 3 marks	Marks	
1	Convert $(456.78)_{10}$ to a) binary b) octal and c) hexadecimal	(3)	
2	Write a) 1's complement and 2) 2's complement representations of (-126)	(3)	
3	State and prove De Morgan's Theorem	(3)	
4	Design a circuit using NAND gates for implementing EXCLUSIVE-OR function	(3)	
5	Design a half adder circuit using any universal gate.	(3)	
6	Draw the logic diagram of a 2x1 multiplexer circuit	(3)	
7	Derive the characteristic equation of a D flip flop from its excitation table.	(3)	
8	How is a sequential circuit different from a combinational circuit? Give an example for each circuit.	(3)	
9	Distinguish between a ring counter and Johnson counter	(3)	
10	When do you implement a combinational circuit using ROM and when do implement a combinational circuit using PLA in preference to ROM. PART B Answer any one full question from each module. Each question carries 14 marks Module 1	(3)	
11	a) Convert i) $(13AF)_{16}$ to octal ii) $(10110101.101)_2$ to decimal	(6)	
	b) Add i) BCD numbers 1567 and 968 ii) octal numbers 2376 and 5677	(8)	
12	a) Perform the following operations using 2's complement representation	(10)	
	i) $(-34) + (+21)$ ii) $(+26) - (-12)$ iii) $(-33) + (-22)$ iv) $(+45) - (+32)$		
	b) Convert i) (10011010) in 2's complement form to decimal	(4)	
	ii) (10111001) in 1's complement form to decimal		
Module 2			
13	a) Using K Map simplify the function	(8)	
	$F(w, x. y, z) = \sum (0,1,2,3,5,7,8,9,10,13,15)$		
	b) Express the above function in product of maxterms form.	(6)	

0800CST203122001

14	a) Using tabulation method simplify the function	(8)	
	$F(w,x,y,z) = \sum (0,2,4,5,6,7,8,12,13,14,15)$		
	b) Express the following functions in a canonical form	(6)	
	i) $F=D+BC'$ ii) $F=AB'+BC'$		
Module 3			
15	a) Design a full subtractor circuit.	(6)	
	b) Design a code converter for converting a BCD to excess-3 code.	(8)	
16	a) Explain BCD adder using a block diagram.	(7)	
	b) Design a 2 bit magnitude comparator.	(7)	
	Module 4		
17	a) With a logic diagram explain how a master slave flip flop overcomes race	(7)	
	around problem.		
	b) Design a 2 bit synchronous counter.	(7)	
18	a) Draw the state diagram and logic diagram of a BCD ripple counter.	(6)	
	b) Design a 3 bit synchronous up-down counter.	(8)	
Module 5			
19	a) Explain the working of a 3 stage Johnson ring counter with a block diagram	(7)	
	b) Explain the working of a 3 bit bidirectional shift register with parallel load.	(7)	
20	a) Illustrate the algorithm for addition and subtraction of two floating point	(7)	
	numbers.		
	b) Illustrate the algorithm for addition and subtraction two binary numbers in	(7)	
	sign magnitude form.		
