\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: CST203

Course Name: LOGIC SYSTEM DESIGN
Max. Marks: 100
Duration: 3 Hours

PART A
 Answer all questions. Each question carries 3 marks

1 Convert (456.78) ${ }_{10}$ to a) binary b) octal and c) hexadecimal

Marks

 implement a combinational circuit using PLA in preference to ROM. PART B
Answer any one full question from each module. Each question carries 14 marks Module 1

11 a) Convert i) $(13 \mathrm{AF})_{16}$ to octal ii) $(10110101.101)_{2}$ to decimal
b) Add i) BCD numbers 1567 and 968 ii) octal numbers 2376 and 5677

12 a) Perform the following operations using 2's complement representation
i) $(-34)+(+21)$
ii) $(+26)-(-12)$
iii) $(-33)+(-22)$
iv) $(+45)-(+32)$
b) Convert i) (10011010) in 2 's complement form to decimal
ii) (10111001) in 1's complement form to decimal

Module 2

13 a) Using K Map simplify the function
$F(w, x . y, z)=\sum(0,1,2,3,5,7,8,9,10,13,15)$
b) Express the above function in product of maxterms form.

14 a) Using tabulation method simplify the function

$$
\begin{equation*}
\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,2,4,5,6,7,8,12,13,14,15) \tag{6}
\end{equation*}
$$

b) Express the following functions in a canonical form
i) $F=D+B C$ '
ii) $\mathrm{F}=\mathrm{AB}^{\prime}+\mathrm{BC}^{\prime}$

Module 3

15 a) Design a full subtractor circuit.
b) Design a code converter for converting a BCD to excess- 3 code.

16 a) Explain BCD adder using a block diagram.
b) Design a 2 bit magnitude comparator.

Module 4

17 a) With a logic diagram explain how a master slave flip flop overcomes race around problem.
b) Design a 2 bit synchronous counter.

18 a) Draw the state diagram and logic diagram of a $B C D$ ripple counter.
b) Design a 3 bit synchronous up-down counter.

Module 5

19 a) Explain the working of a 3 stage Johnson ring counter with a block diagram
b) Explain the working of a 3 bit bidirectional shift register with parallel load.

20 a) Illustrate the algorithm for addition and subtraction of two floating point numbers.
b) Illustrate the algorithm for addition and subtraction two binary numbers in sign magnitude form.

