\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular and Supplementary Examination December 2020 (2019 Scheme)

Course Code: MAT101
 Course Name: LINEAR ALGEBRA AND CALCULUS (2019 Scheme)

PART A
Answer all questions, each carries 3 marks.
1 Determine the rank of the matrix $A=\left[\begin{array}{lll}2 & 1 & -1 \\ 0 & 3 & -2 \\ 2 & 4 & -3\end{array}\right]$
2 Show that the quadratic form $4 x^{2}+12 x y+13 y^{2}$ is positive definite.
If $z=\sin \left(y^{2}-4 x\right)$ find the rate of change of z with respect to x at the point
$(3,1)$ with y held fixed.
$4 \quad$ Find $\frac{d z}{d t}$ by chain rule, where $z=3 x^{2} y^{2}, \quad x=t^{4}, y=t^{3}$
5 Find the mass of the lamina with density function x^{2} which is bounded by
$y=x$ and $y=x^{2}$.
6 Evaluate $\iint_{R} y^{2} x d A$ over the region $R=\{(x, y),-3 \leq x \leq 2,0 \leq y \leq 1\}$
Test the convergence of the series $\sum_{k=1}^{\infty}\left(\frac{k}{100}\right)^{k}$
8 Does the series $\sum_{k=1}^{\infty}\left(\frac{-3}{4}\right)^{k}$ converge? If so, find the sum.
9 Find the binomial series for $f(x)=(1+x)^{1 / 3}$ up to third degree term.
10 Find the Maclaurin's series of $f(x)=\log (1+x)$ up to third degree term.
PART B
Answer one full question from each module, each question carries 14 marks

Module-I

11 a) Solve the following linear system of equations using Gauss elimination
method. $x+y+z=6, \quad x+2 y-3 z=-4, \quad-x-4 y+9 z=18$
b) Find eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \tag{7}\\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

12 a) Show that the equations:

$$
x+y+z=a, \quad 3 x+4 y+5 z=b, \quad 2 x+3 y+4 z=c
$$

(i)have no solution if $a=b=c=1$
(ii)have many solutions if $a=\frac{b}{2}=c=1$
b) Find the matrix of transformation that diagonalize the matrix
$A=\left[\begin{array}{crr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$. Also, find the diagonal matrix.

Module-II

13
a) Find the local linear approximation of $\frac{4 y}{x+z}$ at $(1,1,1)$
b) Find the absolute extrema of the function $f(x, y)=x^{2}-3 y^{2}-2 x+6 y$ over the square region with vertices $(0,0),(0,2)(2,2)$ and $(2,0)$.
14
a) If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ find the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}$.
b) Locate all relative extrema of $f(x, y)=2 x y-x^{3}-y^{2}$

Module-III

15 a) Use double integrals to find the area of the region enclosed between the parabola $2 y=x^{2}$ and the line $y=2 x$
b) Find the volume of the solid in the first octant bounded by the coordinate planes and the plane $x+2 y+z=6$.

16
a) Change the order of integration and hence evaluate $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2 \sqrt{x}} d y d x$
b) Evaluate $\iint_{G} \int z d V$, where G is the wedge in the first octant cut off from the cylindrical solid $y^{2}+z^{2} \leq 1$ and the planes $y=x$ and $x=0$.

Module-IV

17 a) Test the convergence of the series

$$
\begin{equation*}
1+\frac{1.3}{3!}+\frac{1.3 .5}{5!}+\frac{1.3 \cdot 5.7}{7!}+\ldots \ldots \ldots \tag{7}
\end{equation*}
$$

b) Find the sum of the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$

18
a) Test the convergence of $(i) \sum_{k=1}^{\infty} \frac{k!}{3!(k-1)!3^{k}}$
(ii) $\sum_{k=1}^{\infty}\left(\frac{4 k-5}{2 k+1}\right)^{k}$
b) Test the absolute or conditional convergence of $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k^{2}}{k^{3}+1}$

Module-V

19 a) Expand into a Fourier series, $f(x)=e^{-x}, 0<x<2 \pi$
b) Find the half range cosine series for $f(x)=(x-1)^{2}$ in $0 \leq x \leq 1$.

20 a) Find the Fourier series of the function $f(x)=|x|$ in $-1 \leq x \leq 1$
b) Find the Fourier sine series of $f(x)=x \cos x$ in $0<x<\pi$

