01000CY100092001

Pages: 3

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1,S2(S,FE) Examination May 2021(2015 Scheme)

Course Code: CY100 Course Name: ENGINEERING CHEMISTRY

Max.	Marks: 100 Duration: 3	3 Hours
1	PART A Answer all Questions. Each question carries 2 Marks Write the equation for the number of vibrational degrees of freedom in a linear	Marks (2)
	molecule if the number of atoms in the molecule is 'n' and hence predict the	, ,
	number of vibrational degrees of freedom in HCl.	
2	Write Nernst equation for equilibrium reduction potential of a half cell and	(2)
	explain the terms.	
3	What is R_f factor in TLC?	(2)
4	What are fullerenes?	(2)
5	Define aniline point.	(2)
6	What is natural gas? Distinguish between LNG and CNG	(2)
7	Calculate the carbonate and non-carbonate hardness of a water sample having	(2)
	14.6mg/L of Mg(HCO ₃) ₂ , 16.2 mg/L of Ca(HCO ₃) ₂ , 6 mg/L of MgSO ₄ .	
8	What are the factors affecting dissolved oxygen in water?	(2)
	PART B Answer all questions. Each question carries 3 Marks	
9	Calculate the C-H stretching frequency, provided that the force constant of the	(3)
	bond is $5 \times 10^2 \text{ Nm}^{-1}$ and mass of carbon atom is $20 \times 10^{-27} \text{ Kg}$ and hydrogen	` /
	atom is 1.6 x 10 ⁻²⁷ Kg.	
10	With the help of a diagram explain the determination of standard electrode	(3)
	potential of a zinc electrode using SHE.	
11	A resistance of 0.15 N solution of a salt contained in a volume between two	(3)
	electrodes 5 cm apart and 12.5 cm ² in area was found to be 80 ohms. Calculate	
	specific conductance of the solution.	
12	Write the preparation and any two properties of ABS.	(3)
13	Calculate the gross and net calorific values of coal having the following	(3)

01000CY100092001

		compositions. carbon = 85 %, hydrogen = 8 %, sulphur = 1%, nitrogen = 2%,	
		ash = 4 %, latent heat of steam = 587 cal/gm.	
14		Write a note on solid lubricants using suitable examples.	(3)
15		Explain the chemical reactions when soluble soap (sodium salt of a higher fatty	(3)
		acid) is added to hard water	
16		Explain UASB process for the treatment of waste water	(3)
		PART C	
		Answer all questions. Each question carries 10 Marks	
17	a.	Explain the phenomenon of spin-spin splitting	(4)
	b.	Predict the number of signals, chemical shift and spin – spin-splitting in the	(6)
		NMR spectra of 2-bromopropanoic acid (CH ₃ -CHBr-COOH) and ethane (CH ₃ -	
		CH ₃).	
		OR	
18	a.	Write a note on various types of electronic transitions	(6)
	b.	A solution shows a transmittance of 20 % when taken in a cell of 2.5 cm	(4)
		thickness. Calculate its concentration if the molar absorption coefficient is	
		12000 dm ³ mol ⁻¹ cm ⁻¹ .	
19	a.	What are reference electrodes? Give the electrode representation of standard	(2)
		hydrogen electrode.	
	b.	The standard electrode potential of a zinc electrode at 25°C is -0.76 V.	(2)
		Calculate the electrode potential of zinc electrode when a zinc electrode is	
		immersed in 0.02 M ZnSO ₄ solution at 25°C assumes complete ionization of	
		$ZnSO_4$.	
	c.	Explain the construction of a glass electrode and write the pH determination of	(6)
		a solution using glass electrode with a neat labelled sketch.	
		OR	
20		Explain the construction, working and advantages of a H ₂ -O ₂ fuel cell with a	(10)
		labelled figure.	
21		Discuss the principle, instrumentation and applications of HPLC with the help	(10)
		of a block diagram.	
		OR	
22	a.	Explain the principle and instrumentation of DTA.	(6)
	b.	Describe the differential thermogram of calcium oxalate with a figure.	(4)

01000CY100092001

23	a.	Explain preparation, properties and applications of silicone rubber	(6)
	b.	Explain the synthesis of nanomaterials by sol-gel method	(4)
		OR	
24	a.	Give the preparation and properties of polypyrrole.	(4)
	b.	Write a note on the various mechanisms of conduction in conducting polymers.	(6)
25		Explain the determination of calorific value of a lubricant using a bomb	(10)
		calorimeter with the help of a diagram.	
		OR	
26	a.	What is biodiesel? How is it prepared?	(5)
	b.	Distinguish between Octane number and Cetane number	(5)
27		What are ion exchange resins? Discuss the water softening method by ion	(10)
		exchange method.	
		OR	
28		Explain principle and detailed procedure of EDTA method for the	(10)
		determination of hardness.	
