\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MET203 Course Name: MECHANICS OF FLUIDS

PART A
Answer all questions. Each question carries 3 marks
1 Consider a soap bubble. Is the pressure inside the bubble higher or lower than the 3 pressure outside? Explain.
2 Define the resultant hydrostatic force acting on a submerged surface, and the centre of pressure.
3 What does the word kinematics mean? Explain what the study of fluid kinematics involves?

4 What flow property determines whether a region of flow is rotational or irrotational? Discuss.

5 What is the hydraulic grade line? How does it differ from the energy grade line?
6 Define static, dynamic and hydrostatic pressure. Under what conditions is their sum constant for a flow stream?
7 Define equivalent length for minor loss in pipe flow. How is it related to the minor loss coefficient?
8 Explain how flow rate is measured with obstruction type flowmeters. Compareorificemeters and venturimeters with respect to cost, size, head loss and accuracy.

9 What is a boundary layer? What causes a boundary layer to develop?
10 What is the primary reason for nondimensionalizing an equation?

PART B

Answer any one full question from each module. Each question carries 14 marks
Module 1
a. Consider two identical fans, one at sea level and the other on top of a high mountain running at identical speeds. How would you compare (a) the volume flow rates and (b) the mass flow rates of these two fans?
b. You may have noticed that dams are much thicker at the bottom. Explain why dams are built that way?
a. Differentiate between
(i) Specific weight and Specific volume
(ii) Dynamic viscosity and Kinematic viscosity
(iii) Real fluid and Ideal fluid
b. A manometer is used to measure the pressure in a tank. The fluid used has a specific gravity of 0.80 and the manometer column height is 50 cm . If the local atmospheric pressure is 98 kPa , determine the absolute pressure within the tank.

Module 2

13 The velocity potential function is given by $\varphi=10\left(x^{2}-y^{2}\right)$. Calculate the velocity components at the point $(4,5)$.
14 The velocity components in a steady two-dimensional incompressible flow are given by $u=6 x$ and $v=-6 y$. Prove that the flow satisfies law of conservation of mass.

Module 3

a. Air enters a nozzle steadily at $2.21 \mathrm{~kg} / \mathrm{m}^{3}$ and $30 \mathrm{~m} / \mathrm{s}$ and leaves at $0.762 \mathrm{~kg} / \mathrm{m}^{3}$ and $180 \mathrm{~m} / \mathrm{s}$. If the inlet area of the nozzle is $80 \mathrm{~cm}^{2}$, determine (a) the mass flow rate through the nozzle (b) exit area of the nozzle.
b. A $1 \mathrm{~m}^{3}$ rigid tank initially contains air whose density is $1.18 \mathrm{~kg} / \mathrm{m}^{3}$. The tank is connected to a high pressure supply line through a valve. The valve is opened and air is allowed to enter the tank until the density in the tank rises to $7.20 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the mass of air that has entered the tank.
a. Consider a device with one inlet and one outlet. If the volume flow rates at the inlet and at the outlet are the same, is the flow through this device necessarily steady? Why?
b. A pressurized tank of water has a 10 cm diameter orifice at the bottom where water discharges to the atmosphere. The water level is 3 m above the outlet. The tank air pressure above the water level is 300 kPa (absolute) while the atmospheric pressure is 100 kPa . Neglecting frictional effects, determine the initial discharge rate of water from the tank.

Module 4

a. Consider the flow of air and water in pipes of same diameter at the same temperature and at the same mean velocity. Which flow is more likely to be turbulent? Why?
b. Consider fully developed laminar flow in a circular pipe. If the diameter of the pipe is reduced by half while the flow rate and the pipe length are
held constant, the head loss will (a) double (b) triple (c) quadruple (d) increase by a factor of 8 or (e) increase by a factor of 16 . Explain.
a. What is hydraulic diameter? How is it defined? What is it equal to for a circular pipe of diameter D ?
b. Water at $10^{\circ} \mathrm{C}$ (Density $=999.7 \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$ and dynamic viscosity=
$\mathbf{1 . 3 0 7} \times 10^{-3} \mathbf{N s} / \mathbf{m}^{2}$) is flowing steadily in a 0.20 cm diameter, 15 m long pipe at an average velocity of $1.2 \mathrm{~m} / \mathrm{s}$. Determine (a) the pressure drop, (b) head loss and (c) the pumping power requirement to overcome this pressure drop.

Module 5

a. For each statement, choose whether it is true or false and discuss your answer briefly. These statements concern a laminar boundary layer on a flat plate.

1. At a given x location, if the Reynolds number were to increase, the boundary layer thickness would also increase.
2. As outer flow velocity increases, so does the boundary layer thickness.
3. As the fluid viscosity increases, so does the boundary layer thickness.
4. As the fluid density increases, so does the boundary layer thickness.
b. Write the primary dimensions of the universal ideal gas constant R_{u}. (Use the ideal gas law, $\mathrm{PV}=\mathrm{nR}_{\mathrm{u}} \mathrm{T}$, where P is pressure, V is volume, T is absolute temperature, and n is the number of moles of the gas.)
a. The pressure drop $\Delta \mathbf{p}$, for steady, incompressible viscous flow through a straight horizontal pipe depends on the pipe length 1 , the average velocity V, the fluid viscosity μ, the pipe diameter D, the fluid density $\boldsymbol{\rho}$, and the average "roughness" height e. Determine a set of dimensionless groups that can be used to correlate data.
b. Consider laminar flow over a flat plate. How does the local friction coefficient change with position?
