\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1,S2(S,FE) Examination May 2021 (2015 Scheme)

Course Code: MA101
 Course Name: CALCULUS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all Questions. Each question carries 5 Marks
1 a) Determine whether the series $\sum_{k=0}^{\infty}\left(\frac{4}{5}\right)^{k+2}$ converges.
b) Find the Maclaurins series of $f(x)=\frac{1}{1-x}$.

2
a) Prove that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$ where $z=x^{2} y$.
b) Compute the differential $d z$ of the function $z=\frac{x+y}{x y}$.

3 a) Find the velocity and acceleration of a particle moving along a circular path $\vec{r}(t)=2 \cos t \hat{\imath}+2 \operatorname{sint} \hat{\jmath}$ at time $t=\frac{\pi}{4}$.
b) Fid the directional derivate of $f(x, y, z)=x^{2} y-y z^{2}+z$ at the point $(1,-2,0)$ in the direction of the vector $\vec{a}=2 \hat{\imath}+\hat{\jmath}-2 \hat{k}$.
a) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$
b) Find the area of the region enclosed between the parabola $y=x^{2}$ and the line $y=2 x$.
a) Find the divergence and curl of $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$.
b) Find the work done by the force field $\vec{F}(x, y, z)=x y \hat{\imath}+y z \hat{\jmath}+x z \hat{k}$ on a particle that moves along the curve $C: \vec{r}(t)=t \hat{\imath}+t^{2} \hat{\jmath}+t^{3} \hat{k},(0 \leq t \leq 1)$.
6 a) Evaluate by Green's Theorem, $\oint_{C} y d x+x d y$ where C is the unit circle.
b) Use Divergence theorem for $\vec{F}(x, y, z)=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ taken over the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0$ and $z=1$.

PART B

Module I

Answer any two questions. Each question carries 5 Marks

7 Test the convergence of $\frac{1}{1.2 .3}+\frac{1}{3.4 .5}+\frac{1}{5.6 .7}+\cdots$
8 Find the Taylor series expansion of $f(x)=\cos x ; x=\frac{\pi}{2}$

Find the radius of convergence and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{5^{k}}$

Module II

Answer any two questions. Each question carries 5 Marks

Find the local linear approximation of $f(x, y)=\sqrt{x^{2}+y^{2}}$ at $(3,4)$ and compare the error in approximation by $L(3.04,3.98)$ with the distance between the points.

If $u=f(x-y, y-z, z-x)$, prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
Find the relative extrema of $f(x, y)=x y-x^{3}-y^{2}$

Module III

Answer any two questions. Each question carries 5 Marks

The position function of a particle is given by $\vec{r}=\left(t^{3}-2 t\right) \hat{\imath}+\left(t^{2}-4\right) \hat{\jmath}$. Find the scalar tangential and normal components of acceleration. Also find the vector tangential and normal components of acceleration at $t=1$.

Prove that $\nabla f(r)=\frac{f^{\prime}(r)}{r} \vec{r}$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $r=|\vec{r}|$.
Find an equation of the tangent plane to the ellipsoid $x^{2}+4 y^{2}+z^{2}=18$ at the point $(1,2,1)$ and the parametric equation for the normal line to the surface at the point.

Module IV

Answer any two questions. Each question carries 5 Marks

Evaluate $\iint_{R} y d x d y$ where R is the region bounded by the parabola $y^{2}=4 x$ and $x^{2}=4 y$.

Change the order of integration and evaluate $\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y$.
Find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=5$.

Module V

Answer any three questions. Each question carries $\mathbf{5}$ Marks

Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$.
Evaluate the line integral $\int_{C}-y d x+x d y$ along $y^{2}=3 x$ from $(3,3)$ to $(0,0)$
Find the work done by the force field $\vec{F}=\left(y-x^{2}\right) \hat{\imath}+\left(z-y^{2}\right) \hat{\jmath}+\left(x-z^{2}\right) \hat{k}$
along the curve $\vec{r}=t \hat{\imath}+t^{2} \hat{\jmath}+t^{3} \hat{k}, 0 \leq t \leq 1$ from $(0,0,0)$ to $(1,1,1)$

Show that $\vec{F}=y z \hat{\imath}+x z \hat{\jmath}+y x \hat{k}$ is conservative field and hence find its scalar potential function.

Show that the integral $\int_{C}\left(\mathrm{xy}^{2}+y^{3}\right) d x+\left(x^{2} y+3 x y^{2}\right) d y$ is independent of path joining the points $(1,2)$ and $(3,4)$. Hence evaluate the integral.

Module VI

Answer any three questions. Each question carries $\mathbf{5}$ Marks

Use Green's theorem to evaluate the integral $\int_{C}\left(\mathrm{e}^{\mathrm{x}}+y^{2}\right) d x+\left(e^{y}+x^{2}\right) d y$ where C is the boundary of the region between $y=x^{2}$ and $y=2 x$.

Evaluate the surface integral $\iint_{\sigma} x z d s$ where σ is the part of the plane $x+y+$ $z=1$ that lies in the first octant.

Use Stoke's theorem to evaluate $\int_{C} \vec{F}$. $d \vec{r}$ where $\vec{F}(x, y, z)=(x-y) \hat{\imath}+(y-z) \hat{\jmath}-$ $(z-x) \hat{k}$ where C is the portion of the plane $x+y+z=1$ in the first octant. Assume that the surface has an upward orientation
Use the divergence theorem to find the outward flux of the vector field $\vec{F}(x, y, z)=(x-z) \hat{\imath}+(y-x) \hat{\jmath}+(2 z-y) \hat{k}$; where S is the surface of the cylindrical solid bounded by $x^{2}+y^{2}=a^{2}, z=0$ and $z=1$.
Evaluate $\iint \vec{F}$. \hat{A} ds using divergence theorem, where $\vec{F}=4 x z \hat{\imath}+x y z^{2} \hat{\jmath}+3 z \hat{k}$ over the region bounded by the cone $z^{2}=x^{2}+y^{2}$ and the plane $z=4$, above the xy plane.

