APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY **07 THRISSUR CLUSTER**

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021 **Department of Civil Engineering** Structural Engineering

07CE6303 ADVANCED DESIGN OF CONCRETE STRUCTURES

Time:3 hours

Max.Marks: 60

Answer all six questions. Part 'a' of each question is compulsory. Answer either part 'b' or part 'c' of each question (The use of IS 456-2000, ACI 318 are permitted in the examination hall) (Make and state necessary assumptions wherever necessary)

Q.no.

Module 1

Marks What is confined concrete? Discuss how the spiral and rectangular hoop 1a 4 reinforcements enhances the strength of concrete.

Answer b or c

- 5 **b** The cross section of a simply supported beam of 6m span is 300mm x 400 mm. The beam is supporting a uniformly distributed live load of intensity 10kN/m over entire span. The beam is supporting a superimposed dead load of 10kN/m in addition to self weight. The beam is reinforced with 3 nos of 16 mm diameter bars at top and 3 Nos. of 20 mm diameter bars at bottom with clear covers of 25 mm each. Assume M20 concrete and Fe415 grade steel. Calculate the short term deflection at mid-span due to live load alone.
- i)Explain stress-strain characteristics of reinforcing steel and the 'Bauschinger' 2 С effect of steel under cyclic loading.

ii)Explain the behavior of concrete under uniaxial and triaxial stresses.

Q.no. Module 2 Marks What are the factors affecting the crack width? Explain with codal provisions 4 2a for reducing the crack width.

Answer b or c

b A beam of width 300mm, depth 500mm and clear cover of 20mm is reinforced 5 with 3-25mm Φ bars. Section is subjected to a maximum bending moment of 450kNm. Calculate the maximum probable crack width as per IS 456. Assume

С

3

M20 concrete and Fe415 steel.

c Illustrate the steps in involved in the design of shear wall as per IS 13920:1993 5

Module 3 Q.no. Marks 4

How are the ties designed in Strut and Tie Models? 3a

Answer b or c

b A transfer girder has to carry two 600mm square column each with a factored 5 load of 4000 kN located at 1/3 rd of the span. The beam has a thickness of 600mm.Total height of 4000mm over a span of 12m. Design the beam for the given loads using ACI method, ignoring self weight. Adopt M35 concrete and Fe415 steel.

c Design a corbel projecting from a 350 mm x 350 mm column. It is to be 5 designed to support a precast beam reaction forces at 100 mm from the face of column. The factored vertical load to be carried is 350 kN. A horizontal force of 50 kN is assumed to develop to account for creep & shrinkage deformation. Adopt M 35 concrete and Fe 415 steel.

Q.no.	Module 4	Marks
4a	what are the different types of fait foundations ?	4
b	Answer b or c A building consists of 9 columns 400mm X 400mm sizes arranged in 3 rows of three each. The distance between the columns is 5.0 m each. The total service load on all the columns is 500kN. The allowable soil pressure is 100 kN/m ² . Design the raft foundation.	5
С	Outline the procedure for designing a raft slab for a chimney supported on a ring beam over the raft.	5
Q.no.	Module 5	Marks
Q.no. 5a	Module 5 Explain the different types of pile foundations.	Marks 5
Q.no. 5a	Module 5 Explain the different types of pile foundations. Answer b or c	Marks 5
Q.no. 5a b	Module 5 Explain the different types of pile foundations. Answer b or c Design a pile for transmitting an axial load of 1200kN. The pile is to be embedded in hard strata up to a depth of 6 m. Use M 20grade of concrete and Fe415 grade steel	Marks 5 7

Module 6

6a What is meant by 'moment redistribution' and what are its implications in the design of design of RCC sections.

Answer b or c

- b i)Explain the limitations given in the IS code regarding 'moment redistribution'
 ii)Can the 'moment redistribution' be applied to the design of columns, why?
 3
- c Draw the design bending moment diagram of a beam of span 6 m, fixed at both ends and carrying ultimate uniformly distributed load of 20kN/m with full redistribution of 30 %

