Reg No.:___

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular and Supplementary Examination December 2020 (2019 Scheme)

Course Code: PHT110 Course Name: ENGINEERING PHYSICS B (2019 Scheme)

DADT A

Max. Marks: 100

Duration: 3 Hours

		Answer all questions, each carries 3 marks.	Marks
1		List any six points to compare mechanical and electrical oscillators.	(3)
2		Derive one dimensional wave equation	(3)
3		Explain the principle and working of antireflection coatings.	(3)
4		Distinguish between Fresnel and Fraunhofer classes of diffraction.	(3)
5		Listany two characteristics of matter waves. Find the expression for de	(3)
		Broglie wavelength.	
6		Define zero, one and two dimensional nanomaterials.	(3)
7		How echo is different from reverberation?	(3)
8		Write a note on SONAR. Give any two uses of it.	(3)
9		Define metastable state and population inversion.	(3)
10		Differentiate between step index and graded index fibre.	(3)
		PART B	
		Answer one full question from each module, each question carries 14 marks	
11	a)	Module-I Frame the differential equation of a damped harmonic motion and obtain its	(10)
		solution. Mention the different cases.	
	b)	The frequency of a tuning fork is 300Hz . If its Q- factor is $5X \ 10^4$, find the	(4)
		time after which its energy becomes $(1/10)^{\text{th}}$ of its initial value.	
12	a)	Discuss the propagation of a transverse wave along a stretched string and	(10)
		derive the expression for frequency.	
	b)	A uniform steel wire has length 10m and mass 2 kg. Find the Tension in the	(4)
		string if the speed of transverse wave on the wire is 340m/s .	

0000PHT110121801 B

Module-II

- 13 a) Explain the formation of Newton's rings. Obtain the expression for finding (10) the wavelength of light.
 - b) An air wedge is formed using two optically plane glass strips of length 15cm. (4)
 A spacer of thickness 0.015 mm is introduced at one end. If the light used is of wavelength 5893Å, find the separation between consecutive bright fringes.
- 14 a) What is grating? Give the theory of plane transmission grating. How can it be (10) used to find the wavelength of light?
 - b) A plane transmission grating has 6000 lines/cm. It is used to obtain a (4) spectrum of light from sodium lamp in second order. Calculate the angular separation between two sodium lines of wavelength 5890 Å and 5896 Å.

Module-III

- 15 a) Starting from a plane wave equation, obtain Schrodinger's time dependent (9) equation, by using de Broglie's formula and Einstein's relation for photon energy.
 - b) Using position momentum uncertainty relation show that electrons cannot (5) exist in the nucleus.
- 16 a) Explain the mechanical, electrical and optical properties of nanomaterials. (9)
 - b) Mention any five applications of nanotechnology. (5)

Module-IV

- 17 a) Explain the terms absorption coefficient and reverberation time. What is (10) the significance of reverberation time? Discuss the factors on which the reverberation time depends and write the Sabine's formula.
 - b) A hall has dimensions of 25m×20m×8m. The reverberation time is (4)
 4s.Determine the average absorption coefficient of the surfaces.
- 18 a) What is meant by magnetostriction effect?Give two examples for (10) magnetostrictive materials. Explain the production of ultrasonic waves by magnetostriction method. Mention any two medical applications of ultrasonic waves.
 - b) A quartz crystal of 2mm is vibrating at resonance. Calculate the fundamental (4) frequency of vibration, if Young's modulus of quartz is 8.5X10¹⁰ N/m² and density3000Kg/m³.

0000PHT110121801 B

		Module-V	
19	a)	Explain construction and working of Ruby laser.	(10)
	b)	Describe the recording of hologram	(4)
20	a)	Define numerical aperture of an optical fibre. With a neat diagram derive an	(10)
		expression for numerical aperture of a step index fibre.	
	b)	The sum of refractive indices of core and cladding is 2.9 and difference is	(4)
		0.03 . Determine numerical aperture and acceptance angle of optical fibre.	

		Page 3 of 3	