APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 07 THRISSUR CLUSTER

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021

Civil Engineering Department Structural Engineering

07 CE 6301 THEORY OF ELASTICTY

Time:3 hours

Max. Marks: 60

Answer all six questions. Part 'a' of each question is compulsory. Answer either part 'b' or part 'c' of each question.

Q.no.	Module 1	Marks
1a	Write all the Differential equations of equilibrium in rectangular Cartesian coordinate system.	4
_	Answer b or c	_
b	When the stress tensor at a point with respect to axes x,y,z is given by $\begin{array}{cccc} 4 & 2 & 3 \\ [\sigma]=[2 & 8 & 0] N/mm^2. \\ 3 & 0 & 10 \end{array}$ Find the stress components by transformation of the axes by 45 ⁰ about the z axis.	5
c	 A body is subjected to a three dimensional state of stress represented by 40 10 30 [σ]=[10 50 20] MPa. 30 20 60 Determine the normal stress and the shearing stress on an octahedral plane. 	5
Q.no.	Module 2	Marks
2a	Derive the strain-displacement relations.	4

Answer b or c

В

b The stress tensor at a point is given by

200	100	-150
[σ]=[100	-300	120] kN/m ² .
-150	120	100

If the modulus of elasticity $E = 2 \times 10^5 \text{ N/mm}^2$ and the Poisson's ratio is 0.3, determine the strain tensor at this point.

c At a point in an elastic body subjected to loading, the strain components with respect to a system of Cartesian coordinates are given by,

14	10	13
[10	8	12]
13	12	10

Determine the normal and shear components on an inclined plane ,whose normal is equally inclined to the three coordinate axes X,Y and Z.

Q.no.	Module 3	Marks
3 a	.Explain Generalised Hooke's law.	4
	Answer b or c	
b	Derive Beltrami-Mitchell compatibility equations.	5
c	Derive the Lame-Navier Equation.	5
Q.no.	Module 4	Marks
4a	Explain plane strain problem with examples.	4
	Answer b or c	
b	Derive the Lame's Equation for thick cylinders subjected to internal and external pressure.	5
c	Derive the compatibility equation with body forces in terms of stress function for plane stress case.	5
O no	Module 5	Marks
Q.110.	Evalein membrane analogy	5 NIAI NS
58	Explain memorane analogy.	5
	Answer b or c	
b	Show that for the same twist ,the elliptical section has a greater shearing stress than the inscribed circular section. Which section take greater torque for the same allowable shearing stress.	7

5

c Explain St.Venant's principle.

Module 6

Marks

7

6a State and prove the theorem of stationary potential energy.

Answer b or c

- b A cantilever beam of span L is subjected to a concentrated load W at a distance 7 'L/3' from the free end.Using Castigliano's theorem ,Determine the deflection under the load.Assume uniform flexural rigidity.
- **c** Explain the principle of Virtual work.

7