Pages: 2

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

M.Tech S1 (R,S) Exam Dec 2020

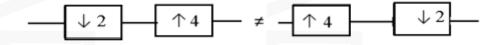
Cluster: **Kollam** Specialisation: **Communication Systems**

02EC6221 ADVANCED DIGITAL SIGNAL PROCESSING

Time: 3 Hrs Max. Marks: 60

Instructions: Answer All Questions from Part A.

Answer Two Full questions from Part B.


PART A

- 1. Describe the sampling locations in the case of rectangular geometry in t1 –t2 plane.

 Obtain the equations that forms the basis of 2D sampling theorem
- 2. Obtain the 2-D convolution of the following input sequence and its kernel.

			m	-1	0	1
7	7	7	n -1	2	-3	- 1
3	5	6	0	0	О	0
5	2	4	1	1	4	1
	INPUT				KERNEL	

- 3. Explain with relevant figures how the window of wavelets is adaptive to frequency variations. State the advantage of wavelets over STFT.
- 4. Prove that the interchange of the cascades of the below shown downsampler and the upsampler are not equal.

 $(4 \times 9 = 36)$

PART B

- 5. Derive LMS algorithm and describe its advantages over other adaptive algorithms
- 6. Design an ideal band pass filter with a frequency response

$$H_d(e^{jw})=1$$
 $\prod / 4 \le |w| \le 3 \prod / 4$
=0 otherwise

Find the values of h(n) for N=11. Find H(z). Plot the frequency response

7. Explain about Lth band filters. With a neat sketch explain the impulse response of a typical third band filter.

(2 x 12=24)

