APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 07 THRISSUR CLUSTER

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021 Civil Engineering Structural Engineering 07 MA 6005 MATHEMATICAL METHODS IN STRUCTURAL ENGINEERING

Time:3 hours

Max. Marks: 60

Answer all six questions. Part 'a' of each question is compulsory. Answer either part 'b' or part 'c' of each question

Q.no.	Module 1	Marks	
1a	Find the Extremals of the functional $\int_{x_1}^{x_2} (x + y')y' dx$	4	
Answer b or c			
b	Find the Extremals of $\int_{\frac{1}{10}}^{\frac{1}{10}} y'(1+x^2y')dx$, if $y(\frac{1}{10}) = 19$, $y(1)=1$	5	
С	Find the plane curve of fixed perimeter and Maximum area.	5	
Q.no.	Module 2	Marks	
2a	Explain the Principle of virtual work.	4	
	Answer b or c		
b	A Cantilever AB of length L Suppose a concentrated load of P at the free end. Determine the deflection and slope at the free end using energy principles Assume uniform flexural rigidity.	5	
С	Discuss the concept of strain energy and complementary strain energy.	5	
		D 1 (

Α

3a 4 Examine whether the set A ={(x,y,z)/2x-y+3z=0} Is a subspace of R^3 . Answer b or c Reduced The Matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 6 & 4 \\ 1 & 3 & 2 \end{bmatrix}$ to echelon form and every solution to AX=0 5 b 5 С Find The Linear Transformation T: $R^2 \rightarrow R^2$ such that T(1,3)=(5,-4), T(-1,1)=(-1.0) Also find that T(2,2)Module 4 Q.no. Marks If B has Eigen value 1,2,3 and C has an Eigen value 4,5,6 and D has an Eigen 4a 4 value 7,8,9 what are the Eigen values of the 6 by 6 matrix $A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$ Answer b or c Diagonalize the Matrix A = $\begin{bmatrix} 7 & -1 & 3 \\ 6 & 1 & 4 \\ 2 & 4 & 8 \end{bmatrix}$ and hence find $A^{\cdot 3}$ 5 b **c** Find the orthonormal Basis of *R*³ from the given Basis B 5 $=\{(1,1,1),(0,1,1),(0,0.1)\}$ Q.no. Module 5 Marks 5a 5 Find the solution of the PDE $u_x + u_y = 0$ using method of separation of variables Answer b or c b 7 Classify the Following PDE and reduce to the canonical from $4u_{xx} + 5u_{yy} + u_{yy} + u_x + u_y = 2$ Page 2 of 3

Module 3

Marks

Q.no.

С

A tightly stretched string of length 10cms fastened at both ends is displaced from its position of equilibrium by imparting to each of its points an initial velocity given by

 $f(x) = \begin{cases} x & if \ 0 \le x \le 5\\ 10 - x \ if \ 5 \le x \le 10 \end{cases}$ x being the t from one end. Determine the

Displacement at any subsequent time.

Q.no.	Module 6	Marks
6a	Solve the two dimensional laplace equation By the method of separation of variables	5
	Answer b or c	
b	Define Neuman Problem for Rectangle for solve it.	7
С	Describe Interior Dirchelet's Problem for circle and hence solve it.	7

Page 3 of 3