APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 07 THRISSUR CLUSTER

FIRST SEMESTER M.TECH. DEGREE EXAMINATION MARCH 2021
Civil Engineering
Structural Engineering
07 MA 6005
MATHEMATICAL METHODS IN STRUCTURAL ENGINEERING

Time: 3 hours
Max. Marks: 60
Answer all six questions. Part ' a ' of each question is compulsory. Answer either part 'b' or part 'c' of each question
Q.no.

Module 1
Marks

1a Find the Extremals of the functional $\int_{x_{1}}^{x_{2}}\left(x+y^{\prime}\right) y^{\prime} d x$
4

Answer b or c

b Find the Extremals of $\int_{\frac{1}{10}}^{1} y^{\prime}\left(1+x^{2} y^{\prime}\right) d x$, if $\mathrm{y}\left(\frac{1}{10}\right)=19, \mathrm{y}(1)=1$
5
c Find the plane curve of fixed perimeter and Maximum area.
Q.no.

Module 2
Marks

2a Explain the Principle of virtual work.
4

Answer b or c

b A Cantilever $A B$ of length L Suppose a concentrated load of P at the free end. Determine the deflection and slope at the free end using energy principles Assume uniform flexural rigidity.
c Discuss the concept of strain energy and complementary strain energy.
Q.no.

Module 3
Marks

3a
Examine whether the set $\mathrm{A}=\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) / 2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}=0\}$ Is a subspace of R^{3}.

Answer b or c

b Reduced The Matrix $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 6 & 4 \\ 1 & 3 & 2\end{array}\right]$ to echelon form and every solution to $A X=0$

C Find The Linear Transformation $\mathrm{T}: R^{2} \longrightarrow \rightarrow R^{2}$ such that $\mathrm{T}(1,3)=(5,-4)$, $\mathrm{T}(-1,1)=(-1.0)$ Also find that $\mathrm{T}(2,2)$
Q.no.

Module 4
Marks

4a
If B has Eigen value $1,2,3$ and C has an Eigen value 4,5,6 and D has an Eigen value $7,8,9$ what are the Eigen values of the 6 by 6 matrix $A=\left[\begin{array}{ll}B & C \\ 0 & D\end{array}\right]$

Answer b or c

b Diagonalize the Matrix $\mathrm{A}=\left[\begin{array}{ccc}7 & -1 & 3 \\ 6 & 1 & 4 \\ 2 & 4 & 8\end{array}\right]$ and hence find A^{3}
c Find the orthonormal Basis of R^{3} from the given Basis B $=\{(1,1,1),(0,1,1),(0,0.1)\}$
Q.no.

Module 5

Marks
5
Find the solution of the PDE $u_{x}+u_{y}=0$ using method of separation of variables

Answer b or c

b Classify the Following PDE and reduce to the canonical from $4 u_{x x}+5 u_{y y}+u_{y y}+u_{x}+u_{y}=2$
c A tightly stretched string of length 10 cms fastened at both ends is displaced from its position of equilibrium by imparting to each of its points an initial velocity given by
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x \text { if } 0 \leq x \leq 5 \\ 10-x \text { if } 5 \leq x \leq 10 \quad \mathrm{x} \text { being the } \mathrm{t} \text { from one end. Determine the }\end{array}\right.$
Displacement at any subsequent time.
Q.no.

Module 6
Marks
6a Solve the two dimensional laplace equation By the method of separation of variables

Answer b or c

b Define Neuman Problem for Rectangle for solve it.

C Describe Interior Dirchelet's Problem for circle and hence solve it.

