\qquad Name.

A P J ABDUL KALAM TECHNOLOGICAL UNIVERSITY M.TECH DEGREE EXAMINATION, DECEMBER 2020
 FIRST SEMESTER

Energy Management

Numerical Methods in Heat Transfer

Time : $\mathbf{3}$ Hours

Max. Marks: 60

PART A
 Answer All Questions

1. List out 2 methods for prediction of heat transfer and fluid flow processes.
2. What is the difference between a nonlinear and a quasilinear partial differential equation?
3. What is the condition for diagonal dominance of a $n \times n$ matrix?
4. Sketch the computational molecule for an explicit (1-D transient) scheme.
4×5 marks $=20$ marks

PART B

5. With reference to a heated wall explain the numerical approach to problem solving.

OR

6. List out any 5 advantages of theoretical calculation in predicting heat transfer problems.
7. Classify the following partial differential equations:
(a) $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{\alpha} \frac{\partial u}{\partial t}$
(b) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(c) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+S=0$
(d) $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{C^{2}} \frac{\partial^{2} u}{\partial t^{2}}$

OR

8. Obtain the first order forward difference expression for the x and y derivatives at the grid point (i, j).
9. Solve the two-dimensional steady state conduction heat equation, over the square mesh of side 3 units, with the boundary conditions as given in the following figure.

OR

10. With respect to the following figure obtain nodal equation for equal increments in x and y corresponding to the node (m, n).

11. Explain Crank-Nicolson method for solving one dimensional transient heat transfer problems.

OR

12. Use explicit method to solve for temperature distribution at 0.3 sec of a thin rod of 10 cm length using $\Delta x=2 \mathrm{~cm}$. and $\Delta t=0.1 \mathrm{sec}$. At time $t=0$, the temperature of the rod is zero and the boundary conditions are fixed at $T(0)=100^{\circ} \mathrm{C}$ and $T(10)=50^{\circ} \mathrm{C}$. The material of the rod is aluminium with $\alpha=0.835 \mathrm{~cm}^{2} / \mathrm{sec}$.
