ELECTRICAL AND ELECTRONICS ENGINEERING

04 MA 6301: Advanced Mathematics
Duration: 3 Hours

Part A

(Answer all questions. Each question carries 3 marks.)

1. Evaluate $\int_{C} \frac{e^{z}}{(z+i)^{3}} d z$ where C is the circle $|\mathrm{z}|=2$.
2. Prove that the set $\{(1,1,4),(2,1,3),(0,1,6)\}$ is a basis for R^{3}.
3. Find the value of k so that the following is the probability distribution of a discrete random variable.

$\mathrm{x}:$	0	1	2	3	4	5	6	7	8
$\mathrm{P}(\mathrm{x}):$	k	3 k	5 k	7 k	9 k	11 k	13 k	15 k	17 k

Also find the distribution function of X .
4. Explain Auto-Correlation function.
5. Why is Powell's method called a pattern search method?
6. Explain the term conjugate directions.
7. Minimize $f\left(x_{1}, x_{2}\right)=6 x_{1}{ }^{2}+2 x_{2}^{2}-6 x_{1} x_{2}-x_{1}-2 x_{2}$ by taking the starting point as $X_{1}=\binom{0}{0}$ using Newton's method.
8. Define the following a) Hessian matrix of a function. b) Gradient of a function.

Part B

(Each full question carries 6 marks)
9. State and prove Poisson's integral formula for a circle.

OR
10. The bounding diameter of a semi-circular plate of radius ' a ' cm is kept at $0^{0} \mathrm{C}$ and the temperature along the semi-circular boundary is given by

$$
u(\mathrm{a}, \theta)=\left\{\begin{array}{c}
50 \theta, \text { when } 0<\theta \leq \pi / 2 \\
50(\pi-\theta), \text { when } \frac{\pi}{2}<\theta<\pi
\end{array}\right.
$$

Find the steady state temperature function $u(r, \theta)$.
11. a) Define the following
i)Linear transformation in vector spaces ii) Isomorphism of vector spaces.
b) Prove that any two bases in a vector space contains the same number of elements.
12. Let V be the set of polynomials $\mathrm{a}_{0}+\mathrm{a}_{1} t+\mathrm{a}_{2} \mathrm{t}^{2}+\ldots . .+\mathrm{a}_{\mathrm{n}} t^{\mathrm{n}}$ with coefficients a_{i} from a field K. Show that V is a vector space under usual operations of addition of polynomials and multiplication by a constant.
13. The distribution function of a continuous random variable is given by

$$
\begin{aligned}
\mathrm{F}(\mathrm{x}) & =\mathrm{x}^{2}, & & 0 \leq \mathrm{x}<1 / 2 \\
& =1-\frac{3}{25}(3-\mathrm{x})^{2}, & & 1 / 2 \leq x<3 \\
& =1, & & x \geq 3 .
\end{aligned}
$$

Find the pdf of X . Evaluate $\mathrm{P}(|X| \leq 1)$ and $\mathrm{P}(1 / 3 \leq \mathrm{X} \leq 4)$.

OR

14. A random variable X has the $\operatorname{pdf} \mathrm{f}(\mathrm{x})=\left\{\begin{array}{r}\frac{k}{1+x^{2}},-\infty<x<\infty \\ 0, \text { otherwise } .\end{array}\right.$

Determine the value of ' k ' and find the distribution function of X . Also evaluate $\mathrm{P}(\mathrm{X} \geq 0)$.
15. a) A man tosses a fair coin until 3 heads occur in a row. Let X_{n} denotes the longest string of heads ending at the $\mathrm{n}^{\text {th }}$ trial. Find the transition probability matrix.
b) Define a random process and classify it.

OR
16. a) Derive Chapman Kolmogorov equation b) Let $\left\{X_{n}: n \geq 0\right\}$ be a Markov chain with three states $0,1,2$ and with transition
$\operatorname{matrix}\left(\begin{array}{ccc}3 / 4 & 1 / 4 & 0 \\ 1 / 4 & 1 / 2 & 1 / 4 \\ 0 & 3 / 4 & 1 / 4\end{array}\right)$ with initial distribution $\mathrm{P}\left(\mathrm{X}_{0}=\mathrm{i}\right)=1 / 3, \mathrm{i}=0,1,2$. Find $\mathrm{P}\left(\mathrm{X}_{2}=2, \mathrm{X}_{1}=1 / \mathrm{X}_{0}=2\right)$.
17. Explain Hooke-Jeeves' method of unconstrained optimization.

OR
18. Using Powell's method find the minimum of the function $\mathrm{f}=4 \mathrm{x}_{1}{ }^{2}+3 \mathrm{x}_{2}{ }^{2}-5 \mathrm{x}_{1} \mathrm{X}_{2}-8 \mathrm{x}_{1}$ starting from the point $(0,0)$.
19. Minimize $\mathrm{f}=2 \mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}$ using steepest descent method with the starting point (1,2).

OR
20. Find the maximum of the function $2 x_{1}+x_{2}+10$ subject to $x_{1}+2 x_{2}{ }^{2}=3$ using Lagrange multiplier method.

