APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER M.TECH DEGREE EXAMINATION

ELECTRICAL AND ELECTRONICS ENGINEERING

04 MA 6301: Advanced Mathematics

Duration: 3 Hours

Maximum Marks: 60

Part A

(Answer all questions. Each question carries 3 marks.)

- 1. Evaluate $\int_C \frac{e^z}{(z+i)^3} dz$ where C is the circle |z| = 2.
- 2. Prove that the set $\{(1,1,4), (2,1,3), (0,1,6)\}$ is a basis for \mathbb{R}^3 .
- 3. Find the value of k so that the following is the probability distribution of a discrete random variable.

x:	0	1	2	3	4	5	6	7 8	8
P (x):	k	3k	5k	7k	9k	11k	13k	15k	17k
Also find the distribution function of X.									

- 4. Explain Auto-Correlation function.
- 5. Why is Powell's method called a pattern search method?
- 6. Explain the term conjugate directions.
- 7. Minimize $f(x_1,x_2) = 6x_1^2 + 2x_2^2 6x_1x_2 x_1 2x_2$ by taking the starting point as $X_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ using Newton's method.
- 8. Define the following a) Hessian matrix of a function. b) Gradient of a function.

Part B

(Each full question carries 6 marks)

9. State and prove Poisson's integral formula for a circle.

OR

10. The bounding diameter of a semi-circular plate of radius 'a' cm is kept at 0^0 C and the temperature along the semi-circular boundary is given by

u(a,
$$\theta$$
) =

$$\begin{cases}
50\theta, \text{ when } 0 < \theta \leq \pi/2 \\
50(\pi - \theta), \text{ when } \frac{\pi}{2} < \theta < \pi
\end{cases}$$

Find the steady state temperature function $u(r,\theta)$.

- 11. a) Define the following
 - i)Linear transformation in vector spaces ii) Isomorphism of vector spaces.
 - b) Prove that any two bases in a vector space contains the same number of elements.

PTO

- 12.Let V be the set of polynomials $a_0 + a_1t + a_2t^2 + \dots + a_nt^n$ with coefficients a_i from a field K. Show that V is a vector space under usual operations of addition of polynomials and multiplication by a constant.
- 13. The distribution function of a continuous random variable is given by

$$F(x) = x^{2}, \qquad 0 \le x < 1/2$$

=1- $\frac{3}{25}(3-x)^{2}, \qquad 1/2 \le x < 3$
=1, $x \ge 3.$

Find the pdf of X. Evaluate $P(|X| \le 1)$ and $P(1/3 \le X \le 4)$.

OR

14. A random variable X has the pdf $f(x) = \begin{cases} \frac{k}{1+x^2}, -\infty < x < \infty \\ 0, \text{ otherwise.} \end{cases}$

Determine the value of 'k' and find the distribution function of X. Also evaluate $P(X \ge 0)$.

- 15. a) A man tosses a fair coin until 3 heads occur in a row. Let X_n denotes the longest string of heads ending at the nth trial. Find the transition probability matrix.
 - b) Define a random process and classify it.

OR

16. a) Derive Chapman Kolmogorov equation b) Let $\{X_n: n \ge 0\}$ be a Markov chain with three states 0,1,2 and with transition

 $\text{matrix} \begin{pmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{pmatrix} \text{ with initial distribution P}(X_0 = i) = 1/3, i = 0, 1, 2.$ Find P(X₂=2,X₁=1/X₀=2).

17. Explain Hooke-Jeeves' method of unconstrained optimization.

OR

- 18. Using Powell's method find the minimum of the function $f=4x_1^2+3x_2^2-5x_1x_2-8x_1$ starting from the point (0,0).
- 19. Minimize $f=2x_1^2+x_2^2$ using steepest descent method with the starting point (1,2).

OR

20. Find the maximum of the function $2x_1+x_2+10$ subject to $x_1+2x_2^2=3$ using Lagrange multiplier method.

