\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

M.Tech S1 (R,S) Exam Dec 2020

Cluster: Kollam

Branch: Electrical and Electronics Engineering

Subject: 02EE6111/02EE6211 ADVANCED ENGINEERING MATHEMATICS

Instructions: Answer All Questions from Part A Answer Two Full Questions from Part B

PART A

1. (a) The joint probability density function of two random variables is given by

$$
f(x, y)= \begin{cases}c(1+x y) & 0 \leq x \leq 6,0 \leq y \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

Find (i) the constant c (ii) $f(x / 3)$.
(b) An electric firm manufactures light bulbs that have a life, before burn-out, that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hrs. Find (i) The probability that a bulb burns more than 834 hrs.
(ii) The probability that a bulb burns between 778 and 834 hrs .
2. (a) Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}$ by using the Conjugate gradient Method with starting point $(0,0)$.
(b) Use dynamic programming method to solve the following problem.

Maximize $Z=x_{1}+9 x_{2}$ subjected to
$2 x_{1}+x_{2} \leq 25, x_{2} \leq 11, x_{1}, x_{2} \geq 0$.
3. (a) Prove that $J_{-n}(x)=(-1)^{n} J_{n}(x)$.
(b) State and prove Rodrigues formula
4. (a) Solve by dual simplex method, Maximize $Z=-2 x_{1}-x_{2}$ subjected to $-3 x_{1}-x_{2} \leq-3,-4 x_{1}-3 x_{2} \leq-6,-x_{1}-2 x_{2} \leq-3, x_{1}, x_{2}, x_{3} \geq 0$.
(b) Solve the integer programming problem Max $Z=2 x_{1}+3 x_{2}$ subjected to $6 x_{1}+5 x_{2} \leq 25, x_{1}+3 x_{2} \leq 10, x_{1}, x_{2}$ are non-negative integers using Branch and Bound method.

PART B

5. (a) Check whether $(2,-5,3)$ can be expressed as the linear combination of vectors $v_{1}=(1 .-3,2), v_{2}=(2 .-4,-1)$ and $v_{3}=(1 .-5,7)$.
(b)Use Gram Schmidt process finds an orthonormal basis of R^{4} for the subspace spanned by (1,1,1,1), (1,1,2,4), (1,2,-4,-3).
6. (a) Find a curve on which the functional $I=\int_{0}^{1}\left(y^{\prime 2}+12 x y\right) d x$ with $y(0)=0, y(1)=1$ can be extremised.
(b) Find the extremal of the functional $\int_{x_{1}}^{x_{2}}\left(y^{2}+y^{\prime 2}+2 y e^{x}\right) d x$
7. (a) Prove that the sphere is a solid figure of revolution which for a given surface area has maximum volume.
(b) Find the QR decomposition of $\mathrm{A}=\left[\begin{array}{cc}3 & -6 \\ 4 & -8 \\ 0 & 1\end{array}\right]$
