Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

M.Tech S1 (R,S) Exam Dec 2020 Cluster: Kollam

Branch: Electrical and Electronics Engineering

Subject: 02EE6111/02EE6211 ADVANCED ENGINEERING MATHEMATICS

Time: 3 Hrs

Max. Marks: 60

Instructions: Answer All Questions from Part A Answer Two Full Questions from Part B

PART A

1. (a) The joint probability density function of two random variables is given by $f(x, y) = \begin{cases} c (1 + xy) & 0 \le x \le 6, 0 \le y \le 5 \\ 0 & otherwise \end{cases}$ Find (i) the constant a (ii) f(x/2)

Find (i) the constant c (ii) f(x/3).

(b) An electric firm manufactures light bulbs that have a life, before burn-out, that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hrs. Find (i) The probability that a bulb burns more than 834 hrs.

(ii) The probability that a bulb burns between 778 and 834 hrs.

2. (a) Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + x_2^2 + 2x_1x_2$ by using the Conjugate gradient

Method with starting point (0, 0).

(b) Use dynamic programming method to solve the following problem.

Maximize $Z = x_1 + 9x_2$ subjected to

 $2x_1 + x_2 \le 25 \; , \; x_2 \le 11 \; , \; \; x_1, x_2 \ge 0 \; .$

- 3. (a) Prove that $J_{-n}(x) = (-1)^n J_n(x)$.
 - (b) State and prove Rodrigues formula
- 4. (a) Solve by dual simplex method, Maximize $Z = -2x_1 x_2$ subjected to $-3x_1 x_2 \le -3$, $-4x_1 3x_2 \le -6$, $-x_1 2x_2 \le -3$, $x_1, x_2, x_3 \ge 0$.
 - (b) Solve the integer programming problem Max $Z = 2x_1 + 3x_2$ subjected to

 $6x_1 + 5x_2 \le 25$, $x_1 + 3x_2 \le 10$, x_1, x_2 are non-negative integers using Branch and Bound method.

(4x9=36)

P.T.O

PART B

5. (a) Check whether (2,-5,3) can be expressed as the linear combination of vectors $v_1 = (1,-3,2), v_2 = (2,-4,-1)$ and $v_3 = (1,-5,7)$.

(b)Use Gram Schmidt process finds an orthonormal basis of R^4 for the subspace spanned by (1,1,1,1), (1,1,2,4), (1,2,-4,-3).

6. (a) Find a curve on which the functional $I = \int_{0}^{1} (y'^2 + 12xy) dx$ with y(0) = 0, y(1) = 1 can be extremised.

(b) Find the extremal of the functional $\int_{x_1}^{x_2} (y^2 + {y'}^2 + 2ye^x) dx$

- 7. (a) Prove that the sphere is a solid figure of revolution which for a given surface area has maximum volume.
 - (b) Find the QR decomposition of A = $\begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}$

(2x12=24)