\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MAT203

Course Name: Discrete Mathematical Structures
Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions. Each question carries 3 marks
1 Without using truth tables, show that
$p \rightarrow(q \rightarrow r) \equiv p \rightarrow(\sim q \vee r) \equiv(p \wedge q) \rightarrow r$
2 Define the terms: Converse, Inverse and Contrapositive.
3 What is Pigeonhole Principle? Given a group of 100 people, at minimum, how many people were born in the same month?
4 In how many ways can the letters of the word 'MATHEMATICS' be arranged such that vowels must always come together?
5 If $A=\{1,2,3,4\}$, give an example of a relation on A which is reflexive and transitive, but not symmetric.

6 Define a complete lattice. Give an example.
7 Define a recurrence relation. Give an example.
8 Determine the coefficient of x^{15} in $f(x)=\left(x^{2}+x^{3}+x^{4}+\ldots\right)^{4}$
9 Define semi-group. Give an example.
10 Show that the set of idempotent elements of any commutative monoid forms a submonoid.

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

11(a) Check whether the propositions $p \wedge(\sim q \vee r)$ and $p \vee(q \wedge \sim r)$ are logically equivalent or not.
(b) Check the validity of the statement

$$
\begin{align*}
& p \rightarrow q \tag{8}\\
& q \rightarrow(r \wedge s) \\
& \sim r \vee(\sim t \vee u)
\end{align*}
$$

$\frac{p \wedge t}{\therefore u}$

12(a) Show that $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$ is a tautology.
(b) Let p, q, r be the statements given as
p : Arjun studies. q : He plays cricket. r : He passes Data Structures.
Let p_{1}, p_{2}, p_{3} denote the premises
p_{1} : If Arjun studies, then he will pass Data Structures.
p_{2} : If he doesn't play cricket, then he will study.
p_{3} : He failed Data Structures.
Determine whether the argument $\left(p_{1} \wedge p_{2} \wedge p_{3}\right) \rightarrow q$ is valid.

Module 2

13(a) State Binomial theorem. Find the coefficient of $x y z^{2}$ in $(2 x-y-z)^{4}$
(b) Determine the number of positive integers n such that $1 \leq n \leq 100$ and n is not divisible by 2,3 or 5 .
14(a) Prove that if 7 distinct numbers are selected from $\{1,2,3, \ldots, 11\}$, then sum of two among them is 12 .
(b) An urn contains 15 balls, 8 of which are red and 7 are black. In how many ways can 5 balls be chosen so that (i)all the five are red (ii)all the five are black (iii) 2 are red and 3 are black (iv) 3 are red and 2 are black.

Module 3

15(a) If f, g and h are functions on integers, $f(n)=n^{2}, g(n)=n+1$,
$h(n)=n-1$, then find (i) $f^{\circ} g^{\circ} h$ (ii) $g^{\circ} f^{\circ} h$ (iii) $h^{\circ} f^{\circ} g$
(b) If $A=\{a, b, c\}$ and $P(A)$ be its power set. The relation \leq be the subset relation defined on the power set. Draw the Hasse diagram of $(P(A), \leq)$.
16(a) Let R be a relation on Z by $x R y$ if $4 \mid(x-y)$. Then find all equivalence classes.
(b) Find the complement of each element in D_{42}.

Module 4

17(a) Solve the recurrence relation $a_{n+1}=2 a_{n}+1, n \geq 0, a_{0}=0$.
(b) Solve the recurrence relation $a_{n+2}=a_{n+1}+a_{n}, n \geq 0, a_{0}=0, a_{1}=1$

18(a) Solve the recurrence relation $a_{n+2}-4 a_{n+1}+3 a_{n}=-200, n \geq 0$, $a_{0}=3000, a_{1}=3300$
(b) Solve the recurrence relation $a_{n}=2 a_{n-1}-4 a_{n-2}, n \geq 3, a_{1}=2, a_{2}=0$

Module 5

19(a) If $f:\left(R^{+},{ }^{\circ}\right) \rightarrow(R,+)$ as $f(x)=\ln x$, where R^{+}is the set of positive real numbers. Show that f is a monoid isomorphism from R^{+}onto R.
(b) Show that every subgroup of a cyclic group is cyclic.

20(a) State and prove Lagrange's Theorem.
(b) If $A=\{1,2,3\}$. List all permutations on A and prove that it is a group.

