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Course Name: Partial Differential equations and Complex analysis

PART A
Answer all questions. Each question carries 3 marks

Derive a partial differential equation from the relation z = (x+y) f ( x? - y?)

2

u_ -t
=e "cosx

Solve using direct integration -

Solve 2z=xp +yq.

Write any three assumptions in deriving one dimensional heat equation.
Show that an analytic function f(z) = u+ iv is constant if its real part is
constant.

Show that the function u =sin x cos hy is harmonic.

Find the Maclaurin series of (z) = sinz

Evaluate 560 Inz dz , where C is the unit circle |z| = 1.
Find all singular points and residue of the function cosec z
Determine the location and order of zeros of the function sin* (g)

PART B

Module 1
Form the Partial differential equation by eliminating the arbitrary constants

from (x —a)?+ (y—b)? = z%cot?

Solve 2xz —p x? - 2gqxy +pq = 0
Solve =22 = Cos ( 2x+ 3
Oveazxay = Cos (2x+3y)
Solve x* (y—z)p + y*(z-x)q = z>(x~-Yy)
Module 2
. . . . . %y %y
Derive the solution of the one dimensional wave equation el c? Fpe

using variable separable method.

An insulated rod of length | has its ends A and B maintained at 0° C and
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100° C respectively until steady state conditions prevail. If B is suddenly
reduced to 0° C and maintained at 0° C, find the temperature at a distance x
from A at time t.
Derive the one dimensional heat flow equation.
A tightly stretched string of length [ with fixed ends is initially in
equilibrium position .If it is set vibrating by giving each points a velocity
VvoSin3 (?). Find the displacement y(x,t).

Module 3

Find an analytic function whose real part is u = sinx coshy

Find the image of the strip % < x <1 under the transformation w = z2

Check whether w = logz is analytic.
Show that under the transformation w = 5 the circle x?2 + y2— 6x =0s

transformed into a straight line in the W plane.
Module 4

. . . in 2
Integrate counter clockwise around the unit circle ¢, == d

Z4
Find the Taylor series of i about the centre z, =i

Evaluate f01+i(x — y + ix?) dz along the parabola y= x2.

Evaluate §, (:)_i =

dz counter clockwise around the circle |z — 3|=2.
Module 5

z%-1
z2—- 5z +6

Find the Laurent’s series expansion of about z= 0 in the region

2< |z| <3

dao
V2-cosb’

Evaluate [,

z—23
z2 — 4z-5

Evaluate gﬁc dz where C : |z—2—1i|] = 3.2 using Residue

theorem.

o (x2 +2)dx
Evaluate fO m

**k*
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