\qquad

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN (EC, AE)
Max. Marks: 100
Duration: 3 Hours
PART A
Answer any two full questions, each carries 15 marks.
1 a) Convert the decimal number 963 to its equivalent Octal, Hexadecimal, BCD, Gray, XS-3 codes.
b) Determine the Hamming code for the information 1101, with even parity.

2 a) Simplify using K-map $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(3,7,11,13,15)+\sum \mathrm{d}(0,12,14)$ and implement the circuit using NAND gates.
b) Write expression for P and Q .

3 a) Develop a full-subtractor circuit using a 3-to-8 decoder and gates.
b) Consider two signed binary numbers $\mathrm{A}=0111$ and $\mathrm{B}=1000(\mathrm{~B}$ is in 2 'complement form). Find A+B and A-B. Use 2's complement method for subtraction. Justify your answer.

PART B

Answer any two full questions, each carries 15 marks.
4 a) Construct a 2 input NAND gate using CMOS. Explain its working with the help of truth table.
b) Explain Fan-in, Fan-out, Propagation delay, and Noise margin of logic families.

5 a) Design a mod-5 synchronous up counter using JK FF.
b) Convert a D FF to T FF.

6 a) Design a 3-bit ripple up counter using T FF and explain its working showing its timing diagram.
b) Build a full adder circuit using PLA.

PART C

Answer any two full questions, each carries 20 marks.

7 a) Construct a 4 bit serial-in serial-out left shift register using JK FF. Describe its operation on every clock pulse.
b) Show the state table and Mealy model state diagram of JK FF. Derive its characteristic equation
8 a) Design a 3-bit asynchronous up/down counter using JK FF that counts up when the mode $\mathrm{M}=1$ and counts down when Mode $=0$. How does the circuit work
b) Explain the working of a twisted ring counter, with the help of timing diagrams.

9 a) Design a circuit to detect the sequence 1010 with overlapping, using D FF. Draw the state diagram, state table, excitation table and the circuit
b) Minimize the state table using implication chart.

Present state	Next state			Output	
	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$	
a	d	b	0	0	
b	e	a	0	1	
c	g	f	0	1	
d	a	d	1	0	
e	a	d	1	0	
f	c	b	0	0	
g	a	e	1	0	

