Reg No.:_

O0000EC207121903 APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: EC207 Course Name: LOGIC CIRCUIT DESIGN (EC, AE)

Max. Marks: 100

Duration: 3 Hours

- Answer any two full questions, each carries 15 marks. Marks
- 1 a) Convert the decimal number 963 to its equivalent Octal, Hexadecimal, BCD, (10) Gray, XS-3 codes.

PART A

- b) Determine the Hamming code for the information 1101, with even parity. (5)
- 2 a) Simplify using K-map $F(a,b,c,d) = \sum m (3,7,11,13,15) + \sum d (0,12,14)$ and (10) implement the circuit using NAND gates.
 - b) Write expression for P and Q.

- 3 a) Develop a full-subtractor circuit using a 3-to-8 decoder and gates. (9)
 - b) Consider two signed binary numbers A=0111 and B=1000 (B is in 2'complement (6) form). Find A+B and A-B. Use 2's complement method for subtraction. Justify your answer.

PART B

Answer any two full questions, each carries 15 marks.

4 a) Construct a 2 input NAND gate using CMOS. Explain its working with the help (7) of truth table. b) Explain Fan-in, Fan-out, Propagation delay, and Noise margin of logic families. (8) 5 a) Design a mod-5 synchronous up counter using JK FF. (10)b) Convert a D FF to T FF. (5) 6 a) Design a 3-bit ripple up counter using T FF and explain its working showing its (9) timing diagram. b) Build a full adder circuit using PLA. (6)

(5)

00000EC207121903

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Construct a 4 bit serial-in serial-out *left shift* register using JK FF. Describe its (8) operation on every clock pulse.
 - b) Show the state table and Mealy model state diagram of JK FF. Derive its (12) characteristic equation
- 8 a) Design a 3-bit asynchronous up/down counter using JK FF that counts up when (10) the mode M=1 and counts down when Mode=0. How does the circuit work
 - b) Explain the working of a twisted ring counter, with the help of timing diagrams. (10)
- 9 a) Design a circuit to detect the sequence 1010 with overlapping, using D FF. Draw (10) the state diagram, state table, excitation table and the circuit
 - b) Minimize the state table using implication chart. (10)

	Present	Next state		Output	
	state	x=0	x=1	x=0	x=1
	a	d	b	0	0
	b	e	a	0	1
	c	g	f	0	1
	d	a	d	1	0
	e	a	d	1	0
	f	c	b	0	0
	g	а	e	1	0
