Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: EC205

Course Name: ELECTRONIC CIRCUITS (EC,AE)

Max. Marks: 100

Duration: 3 Hours

PART A Answer any two full questions, each carries 15 marks.

Marks

- 1 a) Design and draw an RC differentiator circuit for a given input frequency of (4) 2KHz.
 - b) What are the functions of various capacitors used in RC coupled amplifier? (3)
 - c) Define stability factor. Derive an expression for the stability factor for leakage (8) current of a voltage divider bias circuit. How does the voltage divider bias improve the stability of an amplifier circuit?
- 2 a) With neat circuit diagrams, derive the design criteria for an RC circuit to function (8) as
 - (i) Differentiator
 - (ii) Low pass filter
 - b) In the given circuit, Assume β =100, Vcc = 5 V, V_{BEON} = 0.7V, Rc = 15 KΩ, (7) R_B = 650 KΩ, V_{BB} = 2V, Determine I_{CQ}, V_{CEQ}, rπ and gm. What will be the small signal voltage gain? Assume values for parameters that are not given.

- 3 a) Explain the small signal hybrid pi model of transistor in the CE configuration (8) with neat schematics. Derive the expression for voltage gain without bypass capacitor.
 - b) For a voltage divider bias circuit using Vcc=12V, Rc = $2.2K\Omega$, R_E = $1.5 K\Omega$, (7) R₁ = $7.2 K\Omega$, R₂ = $2.2 K\Omega$, R_L = $1 K\Omega$, draw AC and DC load lines and locate the Q point. Assume values for parameters that are not given.

02000EC205092003

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain various feedback topologies with neat sketches and derive the (9) expressions for input and output impedances for all configurations.
 - b) Draw high frequency equivalent circuits of BJT and discuss Miller effect.. (6)
- 5 a) From the high frequency equivalent circuit, derive the expression for beta cut off (8) frequency of a bipolar transistor. Draw the frequency response for short circuit current gain.
 - b) Draw the circuit diagram of a tuned amplifier and explain its working (4)
 - c) Write short notes on cascade amplifers with a neat sketch. (3)
- 6 a) Draw the circuit diagram of RC phase shift oscillator. Derive an expression for (9) the frequency of oscillation.
 - b) Draw circuit diagrams of the feedback amplifier circuits using voltage series (6) feedback and current series feedback.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Draw the circuit diagram of a transistor bootstrap generator and explain its (10) working. What are its applications?
 - b) Explain various types of biasing methods used for MOSFET amplifiers. (6)
 - c) Draw the small signal equivalent circuit of the MOSFET. (4)
- 8 a) Explain the working of monostable multi-vibrator with a neat circuit diagram and (10) relevant waveforms.
 - b) Explain the working of transistor-based series voltage regulator with a neat (10) circuit diagram.
- 9 a) Explain the working of transformer coupled Class A power amplifier with a neat (10) circuit diagram and collector waveforms. Derive the expression for collector efficiency.
 - b) Draw and explain the hysteresis curve in Schmitt Trigger. (5)
 - c) How short circuit protection is achieved in series voltage regulator? Explain with (5) a neat circuit diagram.
