Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth Semester B.Tech Degree (Hons.) Examination June 2020

Course Code: CS362 Course Name: COMPUTER VISION

Max. Marks: 100		Duration: 3 Hours	
	PART A Answer all questions, each carries 3 marks.	Marks	
1	Explain the role of BRDF in radiometry.	(3)	
2	Illustrate the geometry of a pinhole camera.	(3)	
3	Explain stereopsis? State the two processes involved in it.	(3)	
4	How is the conversion from affine to Euclidean images performed?	(3)	

PART B Answer any two full questions, each carries 9 marks.

- 5 Explain the role of intrinsic and extrinsic parameters in camera calibration. (9)
- 6 a) Explain the following terms in detail: (i) Radiosity (ii) Solid angle (iii) Albedo (4) (iv) Specularity
 - b) State and explain Tomasi's and Kanade's factorization algorithm for affine (5) shape from motion.
- 7 Explain different methods for solving the binocular fusion problem. What role (9) does epipolar geometry play in trying to solve this problem?

PART C Answer all questions, each carries 3 marks.

8	Explain how to obtain hypothesis using invariants.	(3)
9	State the differences between clustering and classification.	(3)
10	Explain how to design a pattern recognition system using features.	(3)
11	Differentiate pose consistency and pose clustering.	(3)

PART D

Answer any two full questions, each carries 9 marks.

12 Explain Bayesian Decision Theory. Derive minimum error rate and minimum (9) risk decision rules using Bayes decision theory.

-

03000CS362052002

13	a)	State the cause for uncorrelated estimates of pose. How can this issue be	(4)
		handled?	
	b)	How is prior probability related to posterior probability? What role do they	(5)
		play in decision making?	
14		Outline how to perform verification in model based vision.	(9)
		PART E	
		Answer any four full questions, each carries 10 marks.	
15	a)	Explain perceptron learning algorithm.	(5)
	b)	Describe the minimum mean squared error method for classification.	(5)
16	a)	Explain the working of support vector machines with neat illustrations.	(5)
	b)	Explain the ID3 algorithm for classification.	(5)
17	a)	What are proximity measures? State two properties of a dissimilarity measure.	(5)
		Mention any two examples for dissimilarity measures, with equations.	
	b)	Explain the various steps involved in clustering, with a suitable example.	(5)
18	a)	Mention the ways in which neural networks can be used for pattern	(5)
		recognition.	
	b)	How are genetic algorithms used for pattern classification?	(5)
19	a)	Write a short note on Classification And Regression Trees (CART). Explain	(7)
		with an example.	
	b)	How are linear discriminant based classifiers different from tree based	(3)
		classifiers?	
20	a)	Explain the K-Means algorithm for clustering, with an example.	(6)
	b)	What are the different types of features that could be used for clustering?	(4)

Page **2** of **2**