Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: IT201

Course Name: DIGITAL SYSTEM DESIGN

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.
Marks complement method.
c) Find the following.
i) $1010001.101 \times 1001.11$
ii) $100110100.0111 \div 1011.110$

2 a) $(5 \mathrm{~A} 6 \mathrm{BE})_{16}=(?)_{8}$
b) Convert (FC 1 A 7$)_{16}$ to its binary equivalent and represent it in Single Precision floating point binary representation.
c) What is duality principle? Write down the basic theorems and postulates of Boolean Algebra.
3 a) Prove that $A+\bar{B} C(A+\overline{B C})=A$
b) Obtain the Canonical SOP expression for
$F=\bar{A} \bar{B} \bar{C}+\bar{B} C \bar{D}+\bar{A} B C \bar{D}+A \bar{B} \bar{C}$ and simplify it using K-map.
What are the limitations of simplification using K-map method?
c) Simplify the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,5,6,12,13,14)+\mathrm{d}(2,4)$ using tabular method.

PART B

Answer any two full questions, each carries 15 marks.

4 a) Design a Full Subtractor circuit and implement it using NAND gates only.
b) Design and explain Carry Look Ahead Adder.

5
a) Design a 4-bit even parity bit generator.
b) Implement a full adder using two 4×1 MUX
c) Design a T flipflop from SR flipflop.

6 a) What is an Excitation table? Give the excitation table of SR, JK, D and T flip flops.
b) Design the sequential circuit described by the following state equations. Use JK flip-flops.
$A(t+1)=x A B+y A^{\prime} C+x y$
$B(t+1)=x A C+y^{\prime} B^{\prime}$
$C(t+1)=x^{\prime} B+y A B^{\prime}$

PART C

Answer any two full questions, each carries 20 marks.
7 a) Give the circuit diagram of Universal Shift Register. Explain its capabilities.
b) Design a Decade ripple counter using J-K Flipflop and explain it with the help of state diagram and timing diagram.
c) Discuss about the effect of propagation delay in clock period of ripple counters.

8 a) Design a counter with binary count sequence 1-2-3-5-6-1. Use J-K flip flop to implement the counter.
b) Design a 4-bit Ring Counter using D flip flop.
c) Explain Hamming Code? Explain its error detection operation for the data word "11001010"?
9 a) Draw and explain the logic diagram of a memory cell for storing one bit of information.
b) Give the hardware description of the circuit below in HDL

c) Draw the flow chart for signed magnitude multiplication algorithm. Explain with an example.
