Reg No.:___

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: IT201 Course Name: DIGITAL SYSTEM DESIGN

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Convert $(1657.8125)_{10}$ to binary and octal equivalents.	(3)
	b)	Subtract $(482)_{10}$ from $(136)_{10}$ using a) 1's complement method and b) 2's	(6)
		complement method.	
	c)	Find the following.	
		i) 1010001.101 x 1001.11	(3)
		ii) 100110100.0111 ÷ 1011.110	(3)
2	a)	$(5A6BE)_{16} = (?)_8$	(2)
	b)	Convert (FC1A7) ₁₆ to its binary equivalent and represent it in Single Precision	(5)
		floating point binary representation.	
	c)	What is duality principle? Write down the basic theorems and postulates of	(8)
		Boolean Algebra.	
3	a)	Prove that $A + \overline{B}C(A + \overline{B}C) = A$	(2)
	b)	Obtain the Canonical SOP expression for	(6)
		$F = \overline{ABC} + \overline{BCD} + \overline{ABCD} + A\overline{BC}$ and simplify it using K-map.	
		What are the limitations of simplification using K-map method?	
	c)	Simplify the Boolean function $F(A,B,C,D) = \Sigma m(1,5,6,12,13,14) + d(2,4)$ using	(7)
		tabular method.	
		PART B	
		Answer any two full questions, each carries 15 marks.	

4	a)	Design a Full Subtractor circuit and implement it using NAND gates only.	(7)
	b)	Design and explain Carry Look Ahead Adder.	(8)

5 a) Design a 4-bit even parity bit generator. (4)

Page 1 of 2

02000IT201092001

	b)	Implement a full adder using two 4 x 1 MUX	(5)
	c)	Design a T flipflop from SR flipflop.	(6)
6	a)	What is an Excitation table? Give the excitation table of SR, JK, D and T flip	(5)
		flops.	
	b)	Design the sequential circuit described by the following state equations. Use JK	(10)
		flip-flops.	
		A(t+1) = xAB + yA'C + xy	
		B(t+1) = xAC + y'BC'	
		C(t+1) = x'B + yAB'	
		PART C	
		Answer any two full questions, each carries 20 marks.	
7	a)	Give the circuit diagram of Universal Shift Register. Explain its capabilities.	(7)
	b)	Design a Decade ripple counter using J-K Flipflop and explain it with the help	(10)
		of state diagram and timing diagram.	
	c)	Discuss about the effect of propagation delay in clock period of ripple counters.	(3)
8	a)	Design a counter with binary count sequence 1-2-3-5-6-1. Use J-K flip flop to	(6)
		implement the counter.	
	b)	Design a 4-bit Ring Counter using D flip flop.	(4)
	c)	Explain Hamming Code? Explain its error detection operation for the data word	(10)
		"11001010"?	
9	a)	Draw and explain the logic diagram of a memory cell for storing one bit of	(5)
		information.	
	b)	Give the hardware description of the circuit below in HDL	(5)
		A w/	
		C E	
	c)	Draw the flow chart for signed magnitude multiplication algorithm. Explain	(10)

c) Draw the flow chart for signed magnitude multiplication algorithm. Explain (10) with an example.

Page **2** of **2**