Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: EC203

Course Name: SOLID STATE DEVICES (EC, AE)

Max. Marks: 100

Duration: 3 Hours

(6)

PART A

Answer any two full questions, each carries 15 marks. Marks

- 1 a) Define Fermi-Dirac distribution function. Explain each term in it. With the help (5) of plots, characterize temperature dependence of this function.
 - b) Starting from fundamentals, derive an expression to calculate the intrinsic carrier (10) concentration of semiconductors. What are the factors on which intrinsic carrier concentration depends?
- 2 a) With suitable assumptions, derive Einstein's relation for mobility of electrons in (7) a semiconductor
 - b) A semiconductor is doped with $2x10^{16}$ cm⁻³ Boron atoms and $1x10^{16}$ cm⁻³ of (8) Phosphorus atoms at 300 K. Calculate
 - i) The type of the sample
 - ii) Electron and Hole concentrations
 - iii) The fermi level position with respect to intrinsic energy level
 - iv) Plot the energy band diagram indicating the band edges, E_f , E_i and the band gap energy.

 $(n_i = 1.5 \times 10^{10} \text{ cm}^{-3} \text{ for Silicon at 300 K})$

- 3 a) Derive one dimensional continuity equation for holes in a semiconductor. With (10) suitable assumptions, obtain the diffusion equations for holes and electrons.
 - b) With suitable energy band diagram, explain the indirect recombination (5) mechanism via traps.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Plot the energy band diagram of a PN junction under
 - i) Equilibrium ii) Forward bias iii) Reverse bias

02000EC203092001

- b) With suitable assumptions, derive Ideal Diode equation. List the current (9) depending factors
- 5 a) Plot the Volt Ampere characteristics of a tunnel diode. Differentiate the energy (8) band diagrams of forward biased, reverse biased and equilibrium conditions of the tunnel diode.
 - b) $1 \times 10^{16} \text{cm}^{-3}$ of Donor atoms are implanted to an n type Silicon sample forming an (7) abrupt junction of square cross section, with area $2 \times 10^{-3} \text{cm}^2$. Assume that the acceptor concentration in the P type region is $4 \times 10^{18} \text{cm}^{-3}$. Calculate
 - i) The built in potential
 - ii) Width of the depletion layer
 - iii) Extension of depletion layer to the n side and the p side of the junction
 - iv) Junction capacitance
 - (relative permittivity $\varepsilon_r = 11.9$ and $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ for Silicon at 300 K)
- 6 a) With the help of energy band diagrams, distinguish behaviour of metal- n type (10)
 Schottky contact and metal-n type Ohmic contact.
 - b) Distinguish between Zener and Avalanche breakdown mechanisms. (5)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Draw the structure of a PNP transistor. Clearly Indicate the current components (4) on the figure.
 - b) Define the basic performance parameters of BJTs? What is the effect of doping (9) and dimensions of emitter, base and collector regions on these parameters?
 - c) The following parameters are given for a PNP transistor. $I_{EP}= 2 \text{ mA}$, $I_{En}= 0.01$ (7) mA, $I_{cP}= 1.98 \text{ mA}$ and $I_{cn}= 0.001 \text{ mA}$. Determine
 - i) The base transport factor
 - ii) The emitter injection efficiency
 - iii) α and β
 - iv) I_E , I_C and I_B
- 8 a) Draw the structure and band diagram of a MOS capacitor with P type substrate, (6) under equilibrium and under strong inversion. Give the condition for strong inversion with reference to band diagram.
 - b) Draw and explain the transfer characteristics of an enhancement type MOSFET. (4)
 - c) An n channel MOS transistor is made on a P type silicon substrate with (10)

02000EC203092001

 N_A = 5x10¹⁵cm⁻³. The oxide thickness is 100 A° and the effective interface charge is Q_i = 6.4x10⁻⁹ C/cm². Work function difference is given as Φ_{ms} = -0.95 V. Calculate,

- i) Surface potential needed to make the surface strongly inverted.
- ii) Flat band voltage
- iii) Threshold voltage

(relative permittivity $\varepsilon_r = 11.9$ and $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ for Silicon at 300 K)

- 9 a) Derive the expression for the drain current of a MOSFET. How will the equation (10) modifies in
 - i) Linear region ii) Saturation region of operations.
 - b) What is base width modulation? How does it affect the BJT characteristics in CE (6) and CB configurations?
 - c) Plot the distribution of minority carriers in the bulk of a PNP transistor in active (4) mode of operation.

Page 3 of 3