02000CS203092001
Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 Scheme)

Course Code: CS203
 Course Name: SWITCHING THEORY AND LOGIC DESIGN

Max. Marks: 100
Duration: 3 Hours
PART A
Answer all questions, each carries 3 marks.
1
a) $(162)_{8}+(537)_{8}=$
b) $(37 \mathrm{~A})_{16}+(4 \mathrm{~B} 9)_{16}=$

2 Using truth table prove that $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
3 Perform subtraction using 2's complement method.
a) $(100)_{2}-(110000)_{2}$
b) $(11010)_{2}-(1101)_{2}$

4 Express the given function in sum of minterms and product maxterms form.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{C}\left(\mathrm{A}^{\prime}+\mathrm{B}\right)+\mathrm{B}^{\prime} \mathrm{C}$

PART B

Answer any two full questions, each carries 9 marks.
5 a) Perform the following conversions.
i) $\quad(231 \mathrm{~B})_{16}=()_{2}$
ii) $\quad(574.32)_{10}=()_{2}$
iii) $\quad(10110011.01)_{2}=()_{8}$
iv) $(107)_{8}=()_{10}$
v) $\quad(2671)_{10}=()_{16}$
b) Convert the decimal number 5.62×10^{3} to IEEE 754 standard single precision floating point binary number.

6 a) Simplify the Boolean function F using the don't care conditions d, in SOP and POS forms.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{BC}$
$\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}+\mathrm{ACD}+\mathrm{AB}^{\prime} \mathrm{D}^{\prime}$
b) The sum of all minterms of a Boolean function of n variables is 1 .

Prove the above statement for $\mathrm{n}=3$.

7 a) Simplify the given function using Tabulation method and determine the prime implicants, essential prime implicants and the minimized Boolean expression.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,6,8,9,10,11,13,15)
$$

PART C

Answer all questions, each carries 3 marks.
Implement Exclusive-OR using only NAND gates.
9 Draw the truth table and the logic circuit of a full adder.
10 Explain race around condition in JK flip-flop.
11 Draw the logic diagram of a D flip-flop using only NAND gates. Draw the characteristic table and obtain the characteristic equation.

PART D

Answer any two full questions, each carries 9 marks.
a) A combinational circuit is defined by the following two functions.
$\mathrm{F}_{1}=\mathrm{x}^{\prime} \mathrm{y}^{\prime}+\mathrm{xyz}{ }^{\prime}$
$F_{2}=x^{\prime}+y$
Design the circuit with a decoder and external gates.
b) Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(0,2,3,5)$ using a 2 X 1 MUX.

13 a) Design a magnitude comparator that compares two 3 bit numbers A and B.
b) Design a circuit that implements an SR flip-flop using a D flip-flop.

14 a) A sequential circuit has two flip-flops A and B and one input x. The flip-flop input functions are as follows.
$\mathrm{J}_{\mathrm{A}}=\mathrm{xB}, \mathrm{K}_{\mathrm{A}}=\mathrm{xB}{ }^{\prime}$
$\mathrm{J}_{\mathrm{B}}=\mathrm{x}^{\prime} \mathrm{A}^{\prime}, \mathrm{K}_{\mathrm{B}}=\mathrm{x}+\mathrm{A}$
Obtain the state table, state diagram and state equations.

PART E

Answer any four full questions, each carries 10 marks.

15 a) Draw the circuit diagram of a 4-bit bidirectional shift register with parallel load and explain its working.

16 a) Design a serial adder using a sequential-logic procedure
b) Explain the different types of ROMs.

17 a) Design a counter with the following binary sequence: $0,1,3,7,6,4$ and repeat. Use T flip-flops.
b) Write an HDL code for a half adder in structural style of modelling.

02000CS203092001

18 a) Explain PLA with a block diagram.
b) A combinational circuit is defined by the functions:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(3,5,6,7)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(0,2,4,7)$
Implement the circuit with a PLA having three inputs, four product terms and two outputs.
19 a) Draw a flow chart and explain the addition and subtraction of two binary numbers in signed magnitude representation.

20 a) Differentiate between synchronous and asynchronous counters.
b) Draw the circuit diagram of a 4- bit binary ripple counter and explain its working.

