\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020

Course Code: EE201

Course Name: CIRCUITS AND NETWORKS

Max. Marks: 100

PART A

Answer all questions, each carries 5 marks.
Duration: 3 Hours

1 State and explain maximum power transfer theorem as applicable to AC networks with load $\mathrm{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}$.
2 List any three properties of incidence matrix associated with graph theory.
3 Define time constant and explain its significance.
4 Explain the terms magnetic coupling and dot convention.
Explain open circuit parameters of a 2 port network.
State the conditions a 2 port network to be reciprocal with respect to $\mathrm{z}, \mathrm{y}, \mathrm{h}, \mathrm{ABCD}$ parameters.
7 State the conditions for a polynomial to be Hurwitz .
Write any five properties of impedance function of RL network.

PART B

Answer any two full questions, each carries 10 marks.
9 Determine the load current I_{L} by using Norton's theorem.

10 a) State and explain superposition theorem.
b) A reduced incidence matrix of a graph is given by

Obtain number of possible trees.

$$
[A]=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & -1 & 1 & -1 & 0 & 0 \\
-1 & 0 & -1 & 0 & -1 & 0
\end{array}\right]
$$

11 For the graph shown below, select a tree with [1, 2, 3, 4] as twigs and [5, 6, 7] as
links. Obtain fundamental tie-set and cut-set matrices for the graph.

PART C
Answer any two full questions, each carries 10 marks.
Determine the current $\mathrm{i}(\mathrm{t})$ when the switch is moved from position 1 to position 2 at $\mathrm{t}=0$. The switch has been in position 1 for a long time to get steady state values.

Derive expression for transient current in a RL series circuit excited with i) DC voltage and ii) AC sinusoidal voltage by applying Laplace transform.
14 a) Two inductively coupled coils have self inductances $L_{1}=50 \mathrm{mH}$ and $\mathrm{L}_{2}=200 \mathrm{mH}$.
i) Find the value of mutual inductance between coils if the coefficient of coupling is 0.5 .
ii) What is the maximum possible mutual inductance?
b) Plot the transient response of RLC series circuit for various damping conditions with DC excitation.

PART D

Answer any twofull questions, each carries 10 marks.
15 a) Find Z parameters of the given two port network. The impedances are $Z_{1}=5 k \Omega$, $Z_{2}=3 \mathrm{k} \Omega, Z_{3}=12 \mathrm{k} \Omega$.

02000EE201092003

b) Given $\mathrm{Z}_{11}=6 \Omega, \mathrm{Z}_{22}=4 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=3 \Omega$. Compute ABCD parameters.

16 a) Determine hybrid parameters. Given, $\mathrm{Z}_{\mathrm{A}}=\mathrm{Z}_{\mathrm{B}}=\mathrm{Z}_{\mathrm{C}}=1 \mathrm{k} \Omega$

b) Check whether the polynomial $P(S)=s^{4}+s^{3}+2 s^{2}+4 s+1$ is Hurwitz.

17
Driving point impedance is given by $Z(s)=\frac{s\left(s^{2}+4\right)\left(s^{2}+6\right)}{\left(s^{2}+1\right)\left(s^{2}+5\right)}$
Obtain first form of Cauer Network.

