\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020

Course Code: CS201
 Course Name: DISCRETE COMPUTATIONAL STRUCTURES

Max. Marks: 100

PART A
 Answer all questions, each carries 3 marks.

Duration: 3 Hours

Marks

 divisible by 2 , nor by 3 , nor by 5 .PART B
Answer any two full questions, each carries 9 marks.
5 a) Let $f(x)=x+2, g(x)=x-2$ and $h(x)=3 x$ for $x \in R$, where R is the set of real numbers. Find gof, fog, fof, gog, foh, hog, hoh and fohog
b) If the function f is defined by $f(x)=x^{2}+1$ on the set $\{-2,-1,0,1,2\}$, find the range of f.
a) Show that the set N of natural numbers is a semigroup under the operation $\mathrm{x} * \mathrm{y}=\max (\mathrm{x}, \mathrm{y})$. Is it a monoid?
b) 8 scientists and 5 politicians take part in a conference. In how many ways can they be seated in a single row if (i) no 2 politician must sit together (ii) no 2 scientist must sit together.
a) Solve the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}, n \geq 2$ and $a_{o}=1$ and $a_{1}=4$
b) Show that $\mathrm{A} X(\mathrm{~B} \cap \mathrm{C})=(\mathrm{AXB}) \cap(\mathrm{AXC})$.

PART C
Answer all questions, each carries 3 marks.
8 Define group homomorphism.
$9 \quad$ How many proper subgroups will be there for a group of order 11? Justify your Answer.
10 Let (L, \leq) be a lattice and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ elements of L. Prove that if $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ then $\mathrm{avb} \leq \mathrm{c} v \mathrm{~d}$
11 Define a complemented lattice. Give an example.

PART D

Answer any two full questions, each carries 9 marks.

12 a) What is a complete lattice? Give an example.
b) Show that the set of all positive rational numbers $\mathrm{Q}+$ forms an abelian group under the operation * defined by $\mathrm{a}^{*} \mathrm{~b}=(\mathrm{ab}) / 2$ for $\mathrm{a}, \mathrm{b} \in \mathrm{Q}^{+}$.
13 a) Define a Boolean algebra. Illustrate a two element Boolean Algebra with an example.
b) Let $\mathrm{H}=\{0,3,6\}$ in Z_{9} under addition. What are the cosets of H in Z_{9} ?

14 a) Verify that the $\operatorname{set}\{0,1,2,3,4,5\}$ under addition and multiplication modulo 6 is group or not.
b) $\mathrm{A}=\{2,3,4,6,12,18,24,36\}$ with partial order of divisibility. Determine whether the POSET is a lattice or not.

PART E

Answer any four full questions, each carries 10 marks.

15 a) Without using truth tables prove that $1(P \wedge Q) \rightarrow(1 P \vee(1 P \vee Q))<=>(1 P \vee Q)$
b) Suppose x is a real number. Consider the statement "If $x^{2}=4$, then $x=2$." Construct the converse, inverse, and contrapositive.
16 a) Prove that $\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})$ and $(\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{r})$ are logically equivalent.
b) Prove that $(\exists x)(P(x) \wedge Q(x))=>(\exists x) P(x) \wedge(\exists x) Q(x)$.

17 a) Show that the premises " A student in this class has not read the book" and
" Everyone in this class passed the first exam " imply the conclusion "Someone who passed the first exam has not read the book".
b) Show that the premises, " It is not sunny this afternoon and it is colder than yesterday" , " We will go swimming only if it is sunny" , " If we do not go swimming , then we will take a canoe trip", and " If we take a canoe trip , then we will be home by sunset" lead to the conclusion " We will be home by sunset".
18 a) Show that (x$)(\mathrm{P}(\mathrm{x})->\mathrm{Q}(\mathrm{x})) \wedge(\mathrm{x})(\mathrm{Q}(\mathrm{x})->\mathrm{R}(\mathrm{x}))=>(\mathrm{x})(\mathrm{P}(\mathrm{x})->\mathrm{R}(\mathrm{x}))$
b) Show that $R \wedge(P \vee Q)$ is a valid conclusion from the premises $P \vee Q, Q \rightarrow R$, $\mathrm{P} \rightarrow \mathrm{M}$ and $\neg \mathrm{M}$.
19 a) Show that ($\exists x) M(x)$ follows logically from the premises (x) (H(x) -> M(x)) and ($\exists \mathrm{x}) \mathrm{H}(\mathrm{x})$
b) Show that $((\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{R})) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})$ is a tautology.

20 a) Prove by contradiction " If $3 n+2$ is an odd integer, then n is odd ".
b) Show that $S \vee R$ is tautologically implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$

