1

Reg No.:___

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: AE363

Course Name: VLSI CIRCUIT DESIGN

a) Explain drain induced barrier lowering and channel length modulation effects in

Max. Marks: 100

Duration: 3 Hours

(8)

(7)

(4)

PART A

Answer any two full questions, each carries 15 marks. Marks

		MOSFET.	
	b)	With the help of neat diagram explain BICMOS technology.	(7)
2	a)	With neat schematic explain the working of NMOS transistor and derive the	(8)
		current equation in linear and saturation region.	
	b)	Explain ion implantation in IC technology.	(7)
3	a)	Describe accumulation, depletion and inversion region of formation in MOS	(7)
		device.	

b) Explain N-well CMOS IC fabrication with a neat sketch. (8)

PART B Answer any two full questions, each carries 15 marks.

4	a)	Implement the logic function y=(AB+C(A+D))' using CMOS logic, obtain its	(8)
		stick diagram.	
	b) Draw the stick diagram of two input NOR gate in CMOS logic.		(4)
	c)	Implement XOR gate using domino logic.	(3)

- 5 a) Discuss the need for design rules. Explain lambda based design rules for CMOS. (8)
 - b) Explain NMOS inverter using depletion load.
- 6 a) Derive the pull up to pull down ratio for an NMOS inverter driven by another (4) NMOS inverter.
 - b) Draw the layout of 3 input NOR gate using NMOS logic. (7)

c) Explain pass transistor and transmission gates logic.

PART C

Answer any two full questions, each carries 20 marks.

7	a)	Explain the latch based clocking.		(10)

00000AE363121903

	b)	Explain arbiters.	(10)
9	a)	Explain the problem of skew and jitter.	(10)
	b)	Explain the dual rail coding used in signal generate completion signal.	(10)
8	a)	Explain the scaling models and scaling factors for device parameters.	(10)
	b)	Explain the clocked sequential circuit of JK and SR flipflop.	(10)