Reg No.:__

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination December 2020 (2015 scheme)

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100

Duration: 3 Hours

(7)

PART A

- Answer any two full questions, each carries 15 marks Marks
- 1 a) Show that the function f(z) defined by.

$$f(z) = \begin{cases} \frac{Re(z)}{z} & z \neq 0\\ 0, & z = 0 \end{cases}$$
 is not continuous at $z = 0$.

- b) Show that $u = x^3 3xy^2$ is harmonic. Hence find its harmonic conjugate. (8)
- 2 a) Determine the Linear fractional transformation that maps $z_1 = 0, z_2 = 2i, z_3 = (8)$ -2*i* onto $w_1 = -1, w_2 = 0, w_3 = \infty$ respectively.
 - b) Find the image of the strip $\frac{1}{2} \le x \le 1$ under the transformation $w = z^2$. (7)
- 3 a) Show that $f(z) = z^2$ is analytic everywhere and find its derivative. (7)
 - b) Under the transformation $w = \frac{1}{z}$, find the image of $x \ge 1$. (8)

PART B

Answer any two full questions, each carries 15 marks

4 a) Evaluate $\int_C Re(z)dz$ where C is the parabola $y = 1 + \frac{1}{2}(x-1)^2$ from (7) 1 + i to 3 + 3i

b) Use Cauchy's integral formula to evaluate $\int_{\mathcal{C}} \frac{e^z \cos z}{(z - \frac{\pi}{4})^3} dz$ where C is the unit (8)

circle counterclockwise.

5 a) Find the poles and residues of $f(z) = \frac{e^z}{z^2 + \pi^2}$. (7)

- b) Find the Taylor series and Laurent series expansions of $f(z) = \frac{1}{1+z}$ about z = -i (8)
- 6 a) Evaluate using Cauchy's residue theorem $\int_C tan 2\pi z \, dz$ where C is the circle (7) |z - 0.2| = 0.2

08000MA201122001

b) Evaluate
$$\int_{-\infty}^{\infty} \frac{x^2+2}{(x^2+4)(x^2+9)} dx$$
(8)
PART C
Answer any two full questions, each carries 20 marks
7 a) Examine whether the vectors $(1, 2, 3, 4), (2, 0, 1, -2) \& (3, 2, 4, 2)$ are linearly (6)
independent or not.
b) Solve the system of equations $y + z = -2$, $4y + 6z = -12$, $x + y + z = 2$ by (7)
Gauss elimination method.
c) Find a basis for row space and a basis for column space of $\begin{bmatrix} 6 & 0 & -3 & 0 \\ 0 & -1 & 0 & 5 \\ 2 & 0 & -1 & 0 \end{bmatrix}$ (7)
8 a) Determine whether the matrix $A = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ -2/3 & 2/3 & 1/3 \\ 2/3 & 1/3 & 2/3 \end{bmatrix}$ is orthogonal. Is A
symmetric?
b) Examine the definiteness of the quadratic form $q = 2xy + 2yz + 2xz$. (7)
c) Find the Eigen values and Eigen vectors of $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ (7)
9 a) Determine the values of λ for which the following system of linear equations (5)
possesses a non-trivial solution
 $3x + y - \lambda z = 0; 4x - 2y - 3z = 0; 2\lambda x + 4y + \lambda z = 0$
b) Diagonalize the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ (10)

c) Find the rank of the following matrix
$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -3 & -1 \end{bmatrix}$$
 (5)

 $\begin{bmatrix} 1 & 1 & -2 & 0 \end{bmatrix}$
