Reg No.:_____

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: CE309 Course Name: WATER RESOURCES ENGINEERING

М	Max. Marks: 100 Duration: 3 Hours								
		Instructions: Graph sheet will be supplied on request							
		PART A							
		Answer any two full questions, each carries 15 marks.	Marks						
1	a)	Explain the different forms of precipitation.	(5)						
	b)	Explain the working of a Siphon type raingauge with a neat sketch.	(5)						
	c)	The normal annual rainfall at stations A, B, C and D in a basin are 809.7, 675.9,	(5)						
		762.8 and 920.1 mm respectively. In the year 2000, the station D was inoperative and							
		the stations A, B and C recorded annual precipitations of 911.1, 723.3 and 798.9 mm							
		respectively. Estimate the rainfall of station D in the year 2000 by normal ratio							
		method.							
2	a)	A six hour storm produced rainfall intensities 7, 18, 25, 12, 10 and 3 mm/hr in	(8)						
		successive one hour intervals over a basin of 800 km^2 . The resulting runoff observed							
		to be 2640 ha.m. Determine the ϕ -index of the storm.							
	b)	Explain the use of double ring infiltrometer for measurement of infiltration. How will	(7)						
		you fit Horton's model.							
3	a)	Define Unit hydrograph. Enlist the assumptions of Unit hydrograph theory.	(5)						
	b)	The peak flood hydrograph due to a 3-hr duration isolated storm in a catchment is	(10)						
		270 m^3 /sec. Total depth of rainfall is 5.9 cm. Assuming an average infiltration loss of							
		0.3 cm/hour and a constant baseflow of 20 m^3 /sec estimate the peak of 3-hr unit							
		hydrograph of this catchment. If the area of the catchment is 567 km^2 , determine the							
		base width of 3-hr unit hydrograph assuming it to be triangular in shape.							
		PART B							
		Answer any two full questions, each carries 15 marks.							
4	a)	Differentiate (i) lift irrigation and flow irrigation (ii) perennial irrigation and	(6)						
		inundation irrigation							

b) The following data pertains to the healthy growth of a crop (i) Field capacity of (9)

soil=29 % (ii) Permanent wilting point = 11 % (iii) Dry density of soil= 1300 kg/m³ (iv) Effective depth of root zone =70 cm (v) Daily consumptive use=12 mm. For healthy growth of crop the moisture content must not fall below 25 % of water holding capacity between Field capacity and Permanent wilting point. How long the crop will survive without irrigation?

5	a)	Enlist the factors affecting selection of site for stream gauging station.						
	b)	Explain (i) stage-discharge curve (ii) current meter rating curve and its calibration	(10)					
6	a)	Explain meandering and meander parameters.	(7)					
	b)	Explain the features of different types of groynes with relevant sketches.	(8)					
		PART C Answer any two full questions each carries 20 marks						
7	a)	What are Flow duration curves? Explain its uses and characteristics.						
	b) The average annual discharge of a river for 11 years is given below							
		Year 1960 61 62 63 64 65 66 67 68 69 70	1					

I Cal	1900	01	02	03	04	05	00	07	00	09	70
Discharge (m ³ /sec)	1750	2650	3010	2240	2630	3200	1000	950	1200	4150	3500

Determine the storage capacity required to meet a demand of 2000 cumec throughout the year by mass curve method.

8	a)	Explain reservoir sedimentation and methods for controlling it.	(10)
			· · ·

b)	Explain the procee	dure for determinatio	n of useful life of reservoirs.	(10)
-,	r r			()

(4)

(4)

- 9 a) Define (i) storativity (ii) transmissibility
 - b) State Darcy's law and comment on its validity.
 - c) A 40 cm diameter well fully penetrates an unconfined aquifer whose bottom is 80 m (12) below the undisturbed groundwater table. When pumped at a steady rate of 1.5 m³/min, the drawdowns in two observation wells at radial distances of 5 m and 15 m are respectively, 4 m and 2m. Determine the drawdown in the well
