Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: ME461
 Course Name: Aerospace Engineering

Max. Marks: 100
Duration: 3 Hours
PART A
Answer any three full questions, each carries 10 marks.
1 a) Mark the extent of the different regions of Earth's atmosphere in a schematic Marks diagram.
b) Explain the characteristics of different regions of Earth's atmosphere with respect to Temperature, Pressure and Density.
a) Demonstrate the use of the 'Buckingham Pi ' theorem in dimensional analysis through the expression for lift force, L, generated by an aerofoil.
b) Explain 2D aerofoils nomenclature with neat figure.

3 a) What are different aerodynamic methods for induced drag reduction?
b) Explain what is meant by elliptical lift distribution. Give one practical example.

4 a) Explain the theoretical procedure for replacement of finite wing by horse shoe vertex system. What is the purpose of the process?
b) An aeroplane has a weight of 2500 kg and span 15 m . If it is flying at a speed of 150 kmph determine the induced drag of the aeroplane. Assume sea level conditions for the flight.

PART B
Answer any three full questions, each carries 10 marks.
5 a) What are the 3 different types of propellers based on the pitch setting arrangement? Explain each type.
b) Define advance ratio of a propeller. Explain the significance of advance ratio.

6 a) Define Thrust required and Thrust available for aircrafts at conditions of level, un accelerated flight.
b) A jet aircraft weighing 9000 kg has a wing span of 16 m and wing area 30 square meter. Determine the power required by the aircraft if it is flying at $250 \mathrm{~m} / \mathrm{s}$. Assume: Level flight without acceleration, mean sea level conditions, parasite drag coefficient 0.02 and Oswald efficiency factor 0.8.
a) From the equations for Range and Endurance, obtain the conditions for maximum range and maximum endurance for a jet aircraft in terms of aerodynamic coefficients.
b) What are high lift devices? Give 4 examples. Explain how each of them help to generate high lift.

PART C Answer any four full questions, each carries 10 marks. With appropriate sketches explain the static and dynamic stability of aircrafts.
11 a) What is the importance of mass balancing in aircraft stability?
b) What are the different methods of achieving mass balance on aircrafts?

12 With a suitable sketch explain the working of an open type wind tunnel.
13 What are 3 major types of aircraft gas turbine engines? What are the relative merits and demerits of each type?
14 a) What are the major differences between space shuttles and satellite launch vehicles?
b) What is meant by space debris? What harm is caused by the space debris for space vehicles?

