Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: EE307 Course Name: SIGNALS AND SYSTEMS

Ma	Max. Marks: 100 Duration: 3		
PART A			
		Answer all questions, each carries 5 marks.	Marks
1		Suppose $x(t) = \frac{dr(t)}{dt}$, where $r(t)$ denotes unit ramp signal. Plot the following	(5)
		signal $x[t+4]x[-t+4]$.	
2		Comment on the stability of the system with impulse response given by	(5)
		$h(t) = (2 + e^{-3t})u(t)$, where $u(t)$ is unit step signal.	
3		State the necessary conditions for the existence of Fourier Transform. Find the	(5)
		FT of $x(t) = te^{at}u(t)$.	
4		Explain the process of signal reconstruction of a sampled signal. Derive the	(5)
		transfer function of zero order hold?	
5		Determine the z transform of $x[n] = a^n u[n] - b^n u[-n-1]$ and find the ROC if (i)	(5)
		a>b and (ii) a <b.< td=""><td></td></b.<>	
6		Explain briefly the mapping of s-plane to z-plane? Show the mapping of	(5)
		stability regions in s-plane and z-plane.	
7		Find the Fourier series coefficients of the discrete signal $x[n] = cos(\frac{\pi}{4}n)$?	(5)
8		Write any five properties of nonlinear systems.	(5)
PART B			
		Answer any two full questions, each carries 10 marks.	
9		Comment on the linearity, causality, time-invariance and memory of a system	(10)
		which finds the odd component of a given signal $x(t)$, that is, $y(t) = odd(x(t))$.	
10	a)	Consider an LTI system with impulse response $h(t) = u(t + 3)$. Find the output	(5)
		$y(t)$, for an input $x(t) = e^{-3t}u(t)$.	
	b)	Find the fundamental period and frequency of the signal	(5)
		$x(t) = 6\sin 24\pi t + 8\sin 36\pi t.$	

11 Find the zero state response for a system with transfer function (10)

 $H(s) = \frac{s+2}{s^2+4s+3}$ if the input is $e^{-t}u(t)$.

PART C

Answer any two full questions, each carries10 marks.

12 Find the complex exponential Fourier series representation of the following (10) signal. Also plot the magnitude spectrum.

$$x(t) = 4\cos 2\omega_0 t$$

Here ω_0 is the fundamental frequency in rad/sec.

13 Find the frequency response of the RC circuit shown below. Plot the magnitude (10) and phase response for RC=1?

- 14 a) Determine the step response of a system with impulse response given by (5) $h[n] = a^n u[n].$
 - b) Consider the analog signal $x_a(t) = 2\cos 2000\pi t + 5\sin 4000\pi t + 12\cos 12000\pi t$. (5) Determine the Nyquist sampling rate.

PART D

Answer any two full questions, each carries 10 marks.

15 Solve difference equation using z-transform

$$y[n] + 2y[n-1] = x[n]$$

with
$$x[n] = \left(\frac{1}{3}\right)^n u[n]$$
, and the initial condition $y(-1) = 1$?

16 a) Find the inverse z-transform of

$$X(z) = \frac{3z^{-1}}{(1 - z^{-1})(1 - 2z^{-1})}$$

if ROC is i) $|z| > 2$, ii) $|z| < 1$, iii) $1 < |z| < 2$

- b) Write a short note on random signals and random processes. (5)
- 17 a) Determine the expression for magnitude and phase response of the following (10) system y[n] = x[n] - 2x[n-1] + x[n-2].

(5)

(10)