Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: EE307
 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100

PART A

Answer all questions, each carries 5 marks.
1 Suppose $x(t)=\frac{d r(t)}{d t}$, where $r(t)$ denotes unit ramp signal. Plot the following signal $x[t+4] x[-t+4]$.
2 Comment on the stability of the system with impulse response given by Marks $h(t)=\left(2+e^{-3 t}\right) u(t)$, where $u(t)$ is unit step signal.

3 State the necessary conditions for the existence of Fourier Transform. Find the FT of $x(t)=t e^{a t} u(t)$.

4 Explain the process of signal reconstruction of a sampled signal. Derive the transfer function of zero order hold?

5 Determine the z transform of $\mathrm{x}[\mathrm{n}]=\mathrm{a}^{\mathrm{n}} \mathrm{u}[\mathrm{n}]-\mathrm{b}^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]$ and find the ROC if (i) $\mathrm{a}>\mathrm{b}$ and (ii) $\mathrm{a}<\mathrm{b}$.

6 Explain briefly the mapping of s-plane to z-plane? Show the mapping of stability regions in s-plane and z-plane.
$7 \quad$ Find the Fourier series coefficients of the discrete signal $x[n]=\cos \left(\frac{\pi}{4} n\right)$?
8 Write any five properties of nonlinear systems.

PART B

Answer any two full questions, each carries $\mathbf{1 0}$ marks.
9 Comment on the linearity, causality, time-invariance and memory of a system which finds the odd component of a given signal $x(t)$, that is, $y(t)=\operatorname{odd}(x(t))$. $y(t)$, for an input $x(t)=e^{-3 t} u(t)$.
b) Find the fundamental period and frequency of the signal
$\mathrm{x}(\mathrm{t})=6 \sin 24 \pi t+8 \sin 36 \pi \mathrm{t}$.

Find the zero state response for a system with transfer function
$H(s)=\frac{s+2}{s^{2}+4 s+3}$ if the input is $e^{-t} u(t)$.

PART C

Answer any two full questions, each carries 10 marks.
12 Find the complex exponential Fourier series representation of the following signal. Also plot the magnitude spectrum.

$$
x(t)=4 \cos 2 \omega_{0} t
$$

Here ω_{0} is the fundamental frequency in rad/sec.
13 Find the frequency response of the RC circuit shown below. Plot the magnitude and phase response for $\mathrm{RC}=1$?

14 a) Determine the step response of a system with impulse response given by
$h[n]=a^{n} u[n]$.
b) Consider the analog signal $x_{a}(t)=2 \cos 2000 \pi t+5 \sin 4000 \pi t+12 \cos 12000 \pi t$.

Determine the Nyquist sampling rate.
PART D
Answer any two full questions, each carries 10 marks.
15 Solve difference equation using z-transform

$$
\begin{equation*}
y[n]+2 y[n-1]=x[n] \tag{10}
\end{equation*}
$$

with $x[n]=\left(\frac{1}{3}\right)^{n} u[n]$, and the initial condition $y(-1)=1$?
16 a) Find the inverse z-transform of

$$
\begin{equation*}
X(z)=\frac{3 z^{-1}}{\left(1-z^{-1}\right)\left(1-2 z^{-1}\right)} \tag{5}
\end{equation*}
$$

if ROC is i) $|z|>2$,
ii) $|z|<1$,
iii) $1<|z|<2$
b) Write a short note on random signals and random processes.

17 a) Determine the expression for magnitude and phase response of the following
system $y[n]=x[n]-2 x[n-1]+x[n-2]$.

