Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: AE307 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100		Marks: 100 Duration: 3	Duration: 3 Hours	
		PART A		
		Answer any two full questions, each carries 15 marks.	Marks	
1	a)	Find the even and odd components of the signal	(4)	
		(i)x(t) = e^{j10t} (<i>ii</i>) $x(n) = \{-2, 1, 2 - 1, 3\}$, where $x(0) = 2$		
	b)	Sketch the signal (<i>i</i>) $r(t) - 2r(t-1) + r(t-2)$	(4)	
		(ii)y(t) = u(t+3)u(-t+3)		
	c)	Check the systems (i) $y(t) = t^2 x(t)$	(7)	
		(ii) $y[n] = nx[n]$ for linearity and time invariance.		
2	a)	Derive the stability criterion for linear time invariant (LTI) system in terms of	(5)	
		impulse response.		
	b)	Given a discrete time LTI system whose impulse response is	(5)	
		$h[n] = n(\frac{1}{2})^n u[n]$. Test the stability and causality of the system.		
	c)	Derive the expression for convolution integral for an LTI system.	(5)	
3	a)	Impulse response of a DT-LTI system is given as $h[n] = \begin{cases} 1 & 3 & 2 & 1 \\ \uparrow & & & 1 \end{cases}$. Find	(5)	
		the response y[n] of the system corresponding to an input		

- $x[n] = \left\{ \begin{array}{cc} 1 & 4 & 3 & 2 \\ & \uparrow & \end{array} \right\}$
- b) Analyse the following signals to determine whether it is energy signal, power (10)signal or neither. Justify your answer with relevant results and equations.

(i)
$$x(t) = \begin{cases} t, & 0 \le t \le 1\\ 2 - t, & 1 \le t \le 2\\ 0, & otherwise \end{cases}$$

(ii) $x(t) = t u(t)$

PART B

Answer any two full questions, each carries 15 marks.

4 a) Derive the expression for impulse response of an ideal low pass filter and plot (6)the frequency response.

00000AE307121903

- Obtain the response y(t) from an ideal low pass filter if a rectangular pulse x(t)(9) b) is transmitted through it, where $x(t) = \begin{cases} 1, & |t| \le \left(\frac{T_0}{2}\right) \\ 0, & otherwise \end{cases}$
- 5 a) State and prove the Parseval's relation and convolution property of Discrete time (8)Fourier series.
 - b) Obtain the Fourier transform of the signal $x(t) = te^{-2t} u(t)$ using an appropriate (3)property.
 - c) Find the Continuous Time Fourier Series coefficients of the signal $x(t) = \cos 4t + \cos 4t$ (4)sin6t.
- a) Give the conditions for distortionless transmission through an LTI systems (6)6
 - b) Find the discrete time Fourier transform of the signal $x[n] = -a^n u[-n-1]$, if a is (5)real and |a| < 1.
 - A DT- LTI system is represented by $H(e^{j\omega}) = \frac{1}{1 + \frac{1}{2}e^{-j\omega} \frac{1}{2}e^{-j2\omega}}$ (4)c)

Find the difference equation representing the input-output relation of the system.

PART C

- Answer any two full questions, each carries 20 marks. A causal DT-LTI system is described by $y[n] \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] =$ 7 a) (12)x[n], where x[n] and y[n] are input and output of the system. Determine the system function H(z), impulse response and step response.
 - b) Check whether the system described in 7a. is stable. Also find the response (6)corresponding to an input $x[n] = (\frac{1}{4})^n u[n]$.
 - c) Derive the relation between Z-Transform and Fourier transform (2)
- 8 a) Given $X(s) = \frac{s+1}{s^2+3s+4}$, find the Laplace transform using the properties of (12)Laplace transform .(i) $y_1(t) = x(2t)$ (ii) $y_2(t) = e^{-2t} x(t)$ (iii) $y_3(t) = x(t) * x(t)$
 - b) Find the initial and final values of the signal with Laplace transform (4)

$$X(s) = \frac{s+4}{s^2 + 3s + 5}$$

- c) Find the Laplace transform and plot ROC of the signal $x(t) = \cos \Omega_0 t u(t)$ (4)
- Find the inverse Laplace transform of $X(s) = \frac{2s+4}{s^2+4s+3}$ for the following 3 9 a) (12)ROCs (i) Re(s) > -1 (ii) Re(s) < -3 (iii) -3 < Re(s) < -1.
 - b) Give the properties of ROC of Z-Transform

(8)