Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: AE307
 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100
PART A
Answer any two full questions, each carries 15 marks.

Duration: 3 Hours

1 a) Find the even and odd components of the signal
(i) $x(\mathrm{t})=\mathrm{e}^{\mathrm{j} 10 \mathrm{t}}$
(ii) $x(n)=\{-2,1,2-1,3\}$, where $x(0)=2$
b) Sketch the signal
(i) $r(t)-2 r(t-1)+r(t-2)$
(ii) $\mathrm{y}(\mathrm{t})=\mathrm{u}(\mathrm{t}+3) \mathrm{u}(-\mathrm{t}+3)$
c) Check the systems (i) $y(t)=t^{2} x(t)$
(ii) $\mathrm{y}[\mathrm{n}]=\mathrm{nx}[\mathrm{n}]$ for linearity and time invariance.

2 a) Derive the stability criterion for linear time invariant (LTI) system in terms of impulse response.
b) Given a discrete time LTI system whose impulse response is $h[n]=n\left(\frac{1}{2}\right)^{n} u[n]$. Test the stability and causality of the system.
c) Derive the expression for convolution integral for an LTI system.

3 a) Impulse response of a DT-LTI system is given as $h[n]=\left\{\begin{array}{llll}1 & 3 & 2 & 1 \\ \uparrow & & & \end{array}\right\}$. Find the response $\mathrm{y}[\mathrm{n}]$ of the system corresponding to an input $x[n]=\left\{\begin{array}{llll}1 & 4 & 3 & 2 \\ & \uparrow & & \end{array}\right\}$
b) Analyse the following signals to determine whether it is energy signal, power signal or neither. Justify your answer with relevant results and equations.
(i) $x(t)= \begin{cases}t, & 0 \leq t \leq 1 \\ 2-t, & 1 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}$
(ii) $x(t)=t u(t)$

PART B

Answer any two full questions, each carries 15 marks.
4 a) Derive the expression for impulse response of an ideal low pass filter and plot the frequency response.
b) Obtain the response $y(t)$ from an ideal low pass filter if a rectangular pulse $x(t)$
is transmitted through it, where $x(t)= \begin{cases}1, & |t| \leq\left(\frac{T_{0}}{2}\right) \\ 0, & \text { otherwise }\end{cases}$
5 a) State and prove the Parseval's relation and convolution property of Discrete time Fourier series.
b) Obtain the Fourier transform of the signal $\mathrm{x}(\mathrm{t})=\mathrm{t}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$ using an appropriate property.
c) Find the Continuous Time Fourier Series coefficients of the signal $x(t)=\cos 4 t+$ sin6t.

6 a) Give the conditions for distortionless transmission through an LTI systems
b) Find the discrete time Fourier transform of the signal $x[n]=-a^{n} u[-n-1]$, if a is real and $|a|<1$.
c) A DT- LTI system is represented by $H\left(e^{j \omega}\right)=\frac{1}{1+\frac{1}{2} e^{-j \omega}-\frac{1}{8} e^{-j 2 \omega}}$

Find the difference equation representing the input-output relation of the system.

PART C

Answer any two full questions, each carries 20 marks.
7 a) A causal DT-LTI system is described by $y[n]-\frac{5}{6} y[n-1]+\frac{1}{6} y[n-2]=$ $x[n]$, where $\mathrm{x}[\mathrm{n}]$ and $\mathrm{y}[\mathrm{n}]$ are input and output of the system. Determine the system function $\mathrm{H}(\mathrm{z})$, impulse response and step response .
b) Check whether the system described in 7a. is stable. Also find the response corresponding to an input $x[n]=\left(\frac{1}{4}\right)^{n} \mathrm{u}[\mathrm{n}]$.
c) Derive the relation between Z-Transform and Fourier transform

8 a) Given $X(s)=\frac{s+1}{s^{2}+3 s+4}$, find the Laplace transform using the properties of
Laplace transform .(i) $y_{1}(t)=x(2 t) \quad$ (ii) $y_{2}(t)=e^{-2 t} x(t) \quad$ (iii) $y_{3}(t)=x(t) * x(t)$
b) Find the initial and final values of the signal with Laplace transform

$$
\begin{equation*}
X(s)=\frac{s+4}{s^{2}+3 s+5} \tag{4}
\end{equation*}
$$

c) Find the Laplace transform and plot ROC of the signal $x(t)=\cos \Omega_{0} t u(t)$

9 a) Find the inverse Laplace transform of $X(s)=\frac{2 s+4}{s^{2}+4 s+3}$ for the following 3
ROCs (i) Re (s) >-1 (ii) Re (s) <-3 (iii) $-3<\operatorname{Re}$ (s) <-1.
b) Give the properties of ROC of Z-Transform

