Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: CE305

Course Name: GEOTECHNICAL ENGINEERING - II

Max. Marks: 100

Duration: 3 Hours

PART A

		Answer any two full questions, each carries 15 marks.	Marks
1	a)	Explain the limitations of Boussinesq's method of stress calculation.	(5)
	b)	A Circular area on the ground surface 8m in diameter carries a uniformly	
		distributed load of 5 kN/m ² . Find the vertical pressure at depth 3m, 5m, 8m and	(10)
		12m. Also plot the variation of stress with depth.	
2	a)	What are the assumptions of the Coulomb's theory? Illustrate the concept of	(5)
		the Coulomb's active pressure in cohesionless soil.	
	b)	Illustrate the use of Newmark's influence chart	(5)
	c)	What is mean by ISOBAR? Explain the significance of Pressure bulb.	(5)
3	a)	Illustrate the different type of earth pressures. Draw the plot showing the	(5)
		variation of pressure intensity.	
	b)	A retaining wall 10m high has sandy backfill with $e=0.65 \emptyset=30^{\circ}$ and $G=2.65$.	
		The water table is at a depth of 3m from the ground surface. Draw the earth	(10)
		pressure diagram and determine the magnitude and point of application of the	

PART B

total active earth pressure. Take $\gamma_w = 9.81 \text{kN/m}^3$.

Answer any two full questions, each carries 15 marks.

- a) Explain the terms (a) Ultimate Bearing capacity (b) Net Ultimate Bearing 4 Capacity (c) Net safe Bearing Capacity (d)Gross safe bearing Capacity (e) Net (10)allowable bearing pressure
 - b) A purely cohesive soil was tested by unconfined compression. The strength obtained was 60kN/m^2 . Estimate the ultimate bearing capacity for strip footing, (5) using Terzaghi's theory. (Bearing capacity factor =5.7)
- 5 a) Explain soil improvement through Preloading method. (5)

06000CE305122002

b) A 1.5 m wide strip footing is to be placed on a homogeneous clay deposit at a depth of 1.0m below the ground level. The average unit weight of soil is 19kN/m³. The cohesive strength of clay can be taken as 40kN/m². The water (10) table is very deep. The load on the footing is 100kN/m run. Check the safety of the foundation against bearing capacity failure.

6	a)	Illustrate any FIVE methods adopted for the rectification of Tilt & Shift of	(5)
		Well Foundation.	(5)

- b) Explain the concept of floating foundation. (5)
- c) Explain the procedure for design of a trapezoidal combined footing. (5)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) A reinforced concrete pile weighting 30kN (inclusive of helmet & dolly) is driven by a drop hammer weighing 40kN and having an effective fall of 0.8m. The average set per blow is 1.4cm. The total temporary elastic compression is (10) 1.8cm. Assuming the co-efficient of restitution as 0.25 and a factor of safety of 2, determine the ultimate bearing capacity and the allowable load for the pile.
 - b) A group of 9 piles 10 m long is used as a foundation for a bridge pier. The piles used are 30 cm dia. with c/c spacing 0.9 m. The subsoil consists of clay with q_u = 150 kN/m². Determine the efficiency neglecting end bearing action. Given adhesion factor as 0.9. (10)
- 8 a) Draw a neat sketch of IS pile load test setup. Explain the determination of safe load of pile from Load – Settlement plot. (10)
 - b) A 30cm diameter concrete pile is driven into a homogeneous consolidated clay deposit (Cu=40kN/m², α=0.7). If the embedded length is 10m, estimate the safe (5) load (FS=2.5 & Nc=9)
 - c) Explain the design criteria to be considered for Machine foundation. (5)
- 9 a) Explain the IS guideline for choosing the spacing and depth of boring. (10)
 - b) What is mean by Site investigation? Explain the purpose of the site (5) investigation.
 - c) Draw a typical bore log of a Standard Penetration Test. (5)
