Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: IT303 Course Name: THEORY OF COMPUTATION

Course Name: THEORY OF COMPUTATION							
Max. Marks: 100 Duration: 3 Hours							
PART A							
		Answer any two full questions, each carries 15 marks.	Marks				
1	a)	Write down the applications of Finite Automata.	(4)				
	b)	Construct a DFA over $\Sigma = \{0,1\}$ that accepts odd number of 0's.	(5)				
	c)	What is meant by language acceptability in FSA? Explain with an example.	(4)				
	d)	Explain String concatenation with an Example	(2)				
2	a)	What is meant by non-determinism? Design an NFA over $\Sigma = \{a,b\}$ for the	(5)				
		language L such that L={Set of all strings ends with 'ab'}.					
	b)	Explain Chomsky classification of grammars with examples.	(6)				
	c)	Differentiate between NFA and DFA.	(4)				
3	a)	Explain the concept of Kleene closure.	(4)				
	b)	Explain Transition Diagram and Table.	(6)				
	c)	Design a Mealy machine to print 2's complement of a binary number.	(5)				
	PART B						
		Answer any two full questions, each carries 15 marks.					
4	a)	State pumping lemma for regular languages.	(2)				
	b)	State and prove Arden's theorem.	(8)				
	c)	List the major steps followed in State Elimination Method for converting a	(5)				
		finite automata to regular expression.					
5	a)	Prove that the language $A=\{yy\mid y\in\{0,1\}^*\ \text{is NOT REGULAR}$	(8)				
	b)	Define PDA. Explain with an example.	(7)				
6	a)	Write regular expression for the language	(4)				
		L={Set of all strings whose length is divisible by 3}					
	b)	Simplify the following CFL:	(8)				
		$S\rightarrow aB/bX$, $A\rightarrow BAd/bSX/a$, $B\rightarrow aSB/bBX$, $X\rightarrow SBD/aBX/ad$					
	c)	Explain GNF with an example.	(3)				

00000IT303121901

PART C

Answer any two full questions, each carries 20 marks.

7	a)	Explain Linear Bounded Automata with an Example.	(4)
	b)	Design a Turing machine that adds two numbers m and n stored as $10^{m}10^{n}1$ in	(8)
		the input tape.	
	c)	State and prove the equivalence of single tape and multi-tape Turing Machine.	(8)
8	a)	List and explain the variants of Turing Machine, and show that they are	(12
		equivalent to a single tape Turing Machine.	
	b)	Prove that Universal Language is recursively enumerable.	(8)
9	a)	Explain Halting problem with an example.	(5)
	b)	Write a short note on Recursive and recursively enumerable languages.	(9)
	c)	Distinguish between decidable and undecidable problems.	(6)
