Reg No.: \qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: IT303

Course Name: THEORY OF COMPUTATION

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.
Marks
1 a) Write down the applications of Finite Automata.
b) Construct a DFA over $\Sigma=\{0,1\}$ that accepts odd number of 0 's.
c) What is meant by language acceptability in FSA? Explain with an example.
d) Explain String concatenation with an Example

2 a) What is meant by non-determinism? Design an NFA over $\Sigma=\{a, b\}$ for the language L such that $\mathrm{L}=\{$ Set of all strings ends with 'ab' $\}$.
b) Explain Chomsky classification of grammars with examples.
c) Differentiate between NFA and DFA.

3 a) Explain the concept of Kleene closure.
b) Explain Transition Diagram and Table.
c) Design a Mealy machine to print 2's complement of a binary number.

PART B

Answer any two full questions, each carries 15 marks.
4 a) State pumping lemma for regular languages.
b) State and prove Arden's theorem.
c) List the major steps followed in State Elimination Method for converting a finite automata to regular expression.
5 a) Prove that the language $A=\left\{y y \mid y \in\{0,1\}^{*}\right.$ is NOT REGULAR
b) Define PDA. Explain with an example.

6 a) Write regular expression for the language $\mathrm{L}=\{$ Set of all strings whose length is divisible by 3$\}$
b) Simplify the following CFL: $\mathrm{S} \rightarrow \mathrm{aB} / \mathrm{bX}, \mathrm{A} \rightarrow \mathrm{BAd} / \mathrm{bSX} / \mathrm{a}, \mathrm{B} \rightarrow \mathrm{aSB} / \mathrm{bBX}, \mathrm{X} \rightarrow \mathrm{SBD} / \mathrm{aBX} / \mathrm{ad}$
c) Explain GNF with an example.

PART C
 Answer any two full questions, each carries 20 marks.

7 a) Explain Linear Bounded Automata with an Example.
b) Design a Turing machine that adds two numbers m and n stored as $10^{\mathrm{m}} 10^{\mathrm{n}} 1$ in the input tape.
c) State and prove the equivalence of single tape and multi-tape Turing Machine.

8 a) List and explain the variants of Turing Machine, and show that they are equivalent to a single tape Turing Machine.
b) Prove that Universal Language is recursively enumerable.

9 a) Explain Halting problem with an example.
b) Write a short note on Recursive and recursively enumerable languages.
c) Distinguish between decidable and undecidable problems.

