В Pages: 2

Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Code: EC303

Course Name: APPLIED ELECTROMAGNETIC THEORY

Max. Marks: 100 **Duration: 3 Hours**

PART A

Marks Answer any two full questions, each carries 15 marks. a) Derive the expression of energy stored in electric field. (7) b) Four 10-nC point charges are located in the z=0 plane at the corners of a square (8) 8cm on a side. A fifth 10-nC positive charge is located at a point 8cm distant from each of the other charges. Calculate the magnitude of the total force on the fifth charge for $\epsilon = \epsilon_0$.

- 2 a) Derive the boundary conditions of electric field and magnetic field from (6) Maxwell's equations at the interface of dielectric-dielectric medium.
 - b) A lossy dielectric has an intrinsic impedance of $50 \angle 10^{\circ}$ Ω at a particular (9)frequency. If at that frequency, the plane wave propagating through the dielectric has the magnetic field component $\mathbf{H} = 10e^{-\alpha y}\cos(\omega t - 5y)\mathbf{a}_x$ A/m find (i) \mathbf{E} (ii) α (iii) Skin depth
- 3 State Maxwell's equations in differential form, integral form and mention the (7)laws from which each of the equation is derived.
 - b) Derive Continuity equation.

PART B

(8)

Answer any two full questions, each carries 15 marks.

- a) Derive the expression for reflection and transmission coefficients field when a (7) plane wave having parallel polarization is incident obliquely at an angle θ_i on the boundary (z plane) at x=0 between medium 1 (z<0) characterized by μ_1 , ϵ_1 , σ_1 and medium 2 (z>0) characterized by μ_2 , ϵ_2 , σ_2 .
 - A 100 Ω lossless line is terminated by unknown load impedance Z_L . If at a (8)distance 0.2λ from the load the voltage is $V_S = 1 + 2j V$ while the current is 5mA. Find the load impedance and VSWR.

00000EC303121903

- 5 a) Derive the expression for volatege, current and input impedance of a (7) transmission line at a distance 1 from load impedance Z_L
 - b) An electromagnetic wave travelling in free space has (8) $E = (5a_y + 2a_z)\cos(\omega t + 2y 4z) V/m.$ Determine (i) ω (ii) λ (iii) The magnetic field component (iv) The time average power.
- 6 a) State Poynting Theorem. Derive the expression for complex Poynting vector. (9)
 - b) The propagation constant of a lossy transmission line is $(1+2j)m^{-1}$ and its characteristic impedance is 100Ω at $\omega=10^6 \text{rad/s}$. What are the values of L, C, R and G?

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) If we want to calculate an impedance at 0.4λ from the load using smith chart, (8) how much degree should we move from the load in the smith chart?
 - b) Consider a 50Ω , quarter-wave long transmission line at 2GHz. It is connected to a 5V, 10Ω source at one end and is left open circuited at the other end. Calculate the magnitude of voltage at the open circuit end.
- 8 a) Derive expression for TM mode in rectangular wave guide. (10)
 - b) A 50+j75 Ω load is connected to 100 Ω lossless line. Using smith chart find (10) (i) Reflection coefficient (ii) Standing Wave Ratio (iii) The load admittance Y_L (iv) Z_{in} at 0.5 λ from the load.
- 9 a) Derive expression for TE mode in rectangular wave guide. (10)
 - b) Consider a TM_{13} propagating inside a rectangular waveguide having a=5cm, (10) b=6cm, $\sigma=0$, $\mu=\mu_0$, $\epsilon=9\epsilon_0$ and $H_x=9sin(\pi x/a)\cos(3\pi y/b)\sin(2\pi\times 10^{11}t-\beta z)$ A/m. Determine (i)The cut-off frequency (ii) The phase constant (iii) The propagation constant (iv) The intrinsic impedance
