\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth Semester B.Tech Degree Regular and Supplementary Examination December 2020

Course Name: MECHANICS OF MACHINERY

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any three full questions, each carries 10 marks.
1 Explain with neat sketch, an application each of the four inversions of slider crank mechanism.
In a four-link mechanism, the crank AB rotates at $36 \mathrm{rad} / \mathrm{s}$. the lengths of the links are $\mathrm{AB}=200 \mathrm{~mm}, \mathrm{BC}=400 \mathrm{~mm}, \mathrm{CD}=450 \mathrm{~mm}$ and $\mathrm{AD}=600 \mathrm{~mm}$. AD is the fixed link. At the instant when AB is at right angles to AD , determine the velocity of the midpoint of link BC.
a) Explain tangent cam with neat sketch.
b) Obtain the condition for minimum acceleration for a tangent cam with roller follower, when the roller is on the flank.
7 a) State and prove the law of gearing.
Design a cam profile as per the data given;
a) The least radius of the cam is 30 mm .
b) The cam is rotating a speed of 1600 rpm counter clockwise.
c) The axis of the knife edge follower is offset by 10 mm to the left.
d) The follower is provided a maximum lift of 40 mm during 160° of the cam rotation subjected to constant acceleration and deceleration.
e) Dwell for the 40° rotation of the cam.
f) Drop of the follower for the next 100° rotation of the cam with SHM and followed by dwell.

Marks
b) Distinguish between the cycloid and involute forms of gear teeth.

Derive an expression for the minimum number of teeth in an involute profile gear.

PART C

Answer any four full questions, each carries 10 marks.
In the given gear train, the shaft B is stationary and shaft C is driven at 380 rpm in the counter clockwise direction. Determine the speed and direction of rotation of shaft A.

10 a) Sketch a reverted gear train and epicyclic gear train.
b) Establish the relation between speed ratio and train value of a simple gear train.
11 a Discuss the method of determining the angles for input and output link in a four-bar mechanism for function generation with an example.
b The motions of the input and output links are related by the equation $y=x^{2}$. The range of x is from 1 to 4 . Find x and y values using Chebychev spacing for five precision points.
In a slider crank mechanism, for the three position coordination, the angular displacements of the crank are 40° and 100°. The respective linear displacements of the slider are 120 mm and 220 mm . The eccentricity of the slider is 20 mm . Design the mechanism graphically.
13 Synthesize a four-bar mechanism to guide a rod (coupler) AB through three consecutive positions $A_{1} B_{1}, A_{2} B_{2}$ and $A_{3} B_{3}$ as follows.
$A_{1}(3,0), B_{1}(3,5), A_{2}(11,7), B_{2}(6,7), A_{3}(5,2)$ and $B_{3}(8,6)$
14 The motions of the input and output links of a four-bar mechanism are governed by the function $y=3 x^{2}$. The x varies from 1 to 3 with an interval of 1 . Assume the input angle varies from 30° to 110° and output angle varies from 70° to 130°. Synthesize the mechanism using Freudenstien's equation.

