Reg No.:_

00000CH405121902me:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Examination (Regular and Supplementary), December 2020

Course Code: CH405 Course Name: CHEMICAL ENGINEERING DESIGN II

Duration: 3 Hours

Instructions:

Max. Marks: 100

- 1. Graph sheets may be provided
- 2. Missing data may be assumed suitably
- 3. The following materials are allowed in the examination:
 - *i. Perry's Chemical Engineers Hand book (original print and attested photocopies), McGraw-Hill Int. Edn.*
 - *ii.* Steam Table (original print), IS Codes, Psychrometric chart.
 - *iii. Attested copies of relevant equations and charts for design of sieve tray from 'Mass Transfer Operations' by Robert E. Treybal (pages 169, 532 to 538), McGraw-Hill Int. Edn*

The attestation must be done by the concerned faculty engaging the subject with official seal.

Answer any two full questions, each carries 50 marks.

Marks

- 1 a) A double-effect long tube evaporator is to concentrate a 10% solution of Sodium (50) Hydroxide to 40%. The feed is fed at 38°C and carries 5000 kg/hr of NaOH. Steam is available at 113°C and a vacuum of 710 mm Hg may be maintained in the last effect. Heat transfer coefficients may be assumed to be 6240 and 3400 W/m²K in the 1st and 2nd effects respectively. Radiation losses and losses by entrainment may be neglected. Design an evaporator for the purpose. Also sketch the sectional elevation of the designed evaporator.
- 2 a) 1000 kg/hr of a mixture containing 60 mole percent acetic acid and 40 mole (50) percent water is to be fractionated to a distillate containing 95 mole percent water and a residue containing 97 mole percent acetic acid using a total condenser and feed is 40% vapour. The enthalpy-concentration data for the water acetic acid at 1 atm pressure are as follows:

х	0	0.188	0.308	0.45	0.52	0.582	0.675	0.726	0.795	0.856	0.913	0.958	1.0
у	0	0.306	0.447	0.60	0.658	0.711	0.78	0.824	0.867	0.904	0.941	0.971	1.0
T, ℃	118.3	110.6	107.8	105.2	104.3	103.5	102.8	102.1	101.5	100.8	100.5	100.2	100

00000CH405121902

- i) Design a sieve tray tower operating at 1 atm. meeting all the hydrodynamic considerations. (40)
- ii) Give a neat sketch of the distillation column (10)
- 3 a) A cooling tower operates in the counter current mode, process hot water entering (25) at 48°C and the cold water leaves at 8°C approach to the wet-bulb temperature. The entering air has a humidity of 0.001 kg/(kg dry air) and wet-bulb temperature of 18°C. The cross-sectional area of the tower is 7 m². Determine the height of the fill required for a tower operating with a liquid loading of 1700 kg-H₂O/(h)(m²) and an air loading of 1950 kg-air/(h)(m²). The overall mass transfer coefficient, K_Ya is 2500 kg/(m³)(h).
 - b) A plant manufactures flue gas containing CO₂ by burning with air in a dryer. (25) Then the flue gases are cleaned & cooled. They contain 15% CO₂, 6% O₂ and 79% N₂. The gases are at 25°C, 912 mm Hg pressure. They are to be scrubbed with 30% MEA solution to bring down the CO₂ content to 2% CO₂. Solvent, 50% in excess enters the column at 25°C and containing 0.058 mol of CO₂/ mol of MEA solution. The scrubber is to be operated at 25°C and 912 mm Hg. Determine number of transfer units and the diameter required for a packed column to handle 100 tons per day of flue gases. The equilibrium data is as follows.

Mol	CO ₂ /	0.058	0.060	0.062	0.064	0.066	0.068	0.072
mol	MEA,							
X								
Mol	CO ₂ /	0.00618	0.01423	0.0328	0.0654	0.1213	0.2047	0.3411
mol(0	$D_2 + N_2),$							
Y	,							

(2 x50= 100 Marks)