Reg No.:__

Name:___

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Seventh Semester B.Tech Degree Examinations (Regular and Supplementary), December 2020

Course Code: AO401 Course Name: COMPUTATIONAL FLUID DYNAMICS

Max. Marks: 100

Duration: 3 Hours

(10)

PART A

Answer any three full questions, each carries 10 marks. Marks

- 1 Derive an expression for momentum equation in conservation form expressing (10) in terms of both body and surface forces?
- 2 Describe in detail about source panel method for numerical solution of non- (10) lifting flow over arbitrary bodies and hence derive an expression for coefficient of pressure over an aerofoil.
- 3 Classify the following system of PDE's

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$$

where, u and v are the two dependent variables

- 4 a) What is grid generation? (2)
 - b) Strong conservative form of a governing flow equations is (8) $\partial U = \partial F = \partial G = \partial H$

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial H}{\partial z} = J$$
. For this unsteady flow in two special dimensions

with no source term. Transform this into computational plane.

PART B

Answer any three full questions, each carries 10 marks.

- 5 Discuss about the effect of numerical dissipation and dispersion by deriving the (10) modified form of 1-D wave equation.
- 6 Discuss the consistency of 1-D linear conduction equation (10)

$$\frac{\partial^2 u}{\partial t^2} = c \frac{\partial^2 u}{\partial x^2}$$

7 Using Von Neumann Stability Analysis, obtain the criterion for stability of (10) Explicit method of 1D heat equation by using FTCS scheme.

00000AO401121901

8	a)	Discuss in detail about different types of errors in numerical scheme?	(6)
	b)	Differentiate between explicit approach and implicit approach for the solution of	(4)
		difference equations.	
		PART C	
9		Answer any four full questions, each carries 10 marks. Explain crank Nicholson Implicit scheme and hence deduce expression for	(10)
		amplification factor.	
10		State the disadvantages of Lax-Wendroff Technique and explain Mac Cormack's	(10)
		technique	
11		Explain about Jacobi Iteration method in parabolic equation and discuss about its	(10)
		convergence scheme	
12	a)	Write a note on FVM	(5)
	b)	Explain node centered control volume	(5)
13		Solve the equation by using Runge kutta method in steps of time ' Δ t'	(10)
		$\frac{\partial u}{\partial t} = -\frac{\partial E}{\partial x}$	
14		Distinguish between vortex centered approach and cell centered approach in finite volume method.	(10)
