Reg No.: Name:	
----------------	--

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S1 (Special Improvement) Examinations January 2021 (2019 scheme)

Course Code: PHT110 Course Name: ENGINEERING PHYSICS B (2019-Scheme)

Course Name: ENGINEERING PHYSICS B			
(2019-Scheme)			
Max. Marks: 100 PART A Duration: 3 Hour			
Answer all questions, each carries 3 marks. Marks			
1	Draw the displacement - time curves for all types of damped harmonic	(3)	
	oscillators and write the conditions.		
2	List two differences between longitudinal and transverse waves. Give an	(3)	
	example for each.		
3	Explain colours of thin films.	(3)	
4	What is Rayleigh's criterion of spectral resolution?	(3)	
5	State and explain Heisenberg's uncertainty principle.	(3)	
6	What is the significance of surface to volume ratio in nanomaterials?	(3)	
7	What is echelon effect? How it can be resolved?	(3)	
8	What is magnetostriction effect? Give two examples for magnetostrictive	(3)	
	materials.		
9	Give any three properties of laser.	(3)	
10	Write a short note on intensity modulated sensor.	(3)	
	PART B		
Answer one full question from each module, each question carries 14 marks			
11 a)	Module-I Formulate the differential equation of a forced harmonic motion. Find the	(10)	
	expressions for its amplitude and phase.		
b)	A damped oscillator of mass 2g has a force constant 10 N/m and damping	(4)	
	constant 2 s ⁻¹ . Find the angular frequency with and without damping.		
12 a)	What is a one dimensional wave and derive the one dimensional wave	(10)	
	equation. Define wavelength, time period, frequency and wave velocity. Also		
	obtain expressions for them.		
b)	A string of mass 0.65 kg is stretched between two supports 30 m apart. If the	(4)	

0000PHT110121905

tension in the string is **160 N**, find the velocity of the wave in the string? How long will a pulse take to travel from one support to the other?

Module-II

- 13 a) With necessary theory, describe an experiment to determine the diameter of a (10) thin wire using airwedge.
 - b) A non-reflecting film is to be deposited on a glass surface. What would be the minimum thickness for zero reflection for a light of wavelength 550 nm? μ for the film is 1.334.
- 14 a) Give the theory of plane transmission grating and explain intensity distribution. (10)

 Also define dispersive power and resolving power of grating
 - b) In Newton's rings experiment the diameters of the 4th and 12th dark rings are
 0.4cm and 0.7cm respectively. Deduce the diameter of 20th dark ring.

Module-III

- 15 a) Write the Schrodinger's equation for a particle in a one dimensional potential (10) well and obtain energy eigen values.
 - b) Compute the de Broglie wavelength of an electron with kinetic energy **4.5 keV**. (4)
- 16 a) What are nanomaterials? Explain the optical, electrical and mechanical (10) properties of nanomaterials.
 - b) A microscope using photons is employed to locate an electron in an atom within a distance of **0.2** Å. What is the minimum uncertainty in the momentum of the electron located in this way?

Module-IV

- 17 a) Explain reverberation and reverberation time. What is the significance of reverberation time? Write down Sabine's formula for evaluating reverberation time and explain the terms.
 - b) What is threshold of hearing and threshold of pain intensity? Give their values. (4)
- 18 a) With a neat diagram explain how the velocity of ultrasonic waves can be (10) determined using ultrasonic diffractometer.
 - b) Find the frequency of ultrasonic waves that can be generated by a nickel rod of length **4cm** (Young's modulus of nickel= **207GPa** and density=**8900 kg/m³**).

Module-V

19 a) Explain the terms spontaneous emission, stimulated emission, population (8) inversion, and metastable state with respect to a laser system.

0000PHT110121905

- b) Describe with figure the construction and reconstruction of a hologram. (6)
- 20 a) Develop an expression for numerical aperture of a step index fibre. Explain the (10) fibre optic communication system with block diagram.
 - b) An optic fibre has core of refractive index 1.6 and cladding of refractive index (4)
 1.58. If this fibre is immersed in a liquid of refractive index 1.4, evaluate numerical aperture and acceptance angle.
