Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third semester B.Tech examinations (S) September 2020

Course Code: EC201

Course Name: NETWORK THEORY

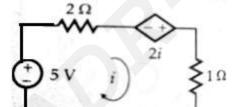
Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

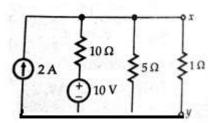
Marks

1 a) Explain Kirchoff's law with example


(2)

(8)

b) Explain final value theorem. Find final value of $F(s) = \frac{2}{s} - \frac{1}{s+1}$


(5)

c) Find the value of dependent voltage source

2 a) Find the power loss in 1 Ω resistor by Thevinin's theorem

b) Explain maximum power transfer theorem applied to dc circuits

- (7)
- 3 a) Find the Laplace transform of (i) $f(t) = \cos^3 3t$ and (ii) $f(t) = \frac{(1-e^{-t})}{t}$ (8)
 - b) Explain tie set matrix, cut set matrix and fundamental cut set matrix with an example (7)

PART B

Answer any two full questions, each carries 15 marks.

4 a) A continuous LTI system is initially relaxed and represented by the equation (8) y''(t) + 3y'(t) + 2y(t) = 2x(t). Using Laplace transform Find (a) transfer

00000EC201121906

		function and (b) Find response of a system for input $x(t) = 4 e^{-3t}$	
	b)	A series RLC circuit with R= 100 Ω , L= 0.1 H and C= 40 μF has a dc voltage of	(7)
		200 V applied at t= 0. Find the transient current.	
5	a)	Derive the response of a series RC circuit for a step input	(5)
	b)	What are the restrictions on poles and zeros for the transfer function and driving	(10)
		point functions	
6	a)	A $100\mu F$ capacitor has an initial charge $Qo=0.002\ C$ is connected in series with	(8)
		200Ω across 50V supply at time t=0. Find the transient current.	
	b)	Define poles and zeros of a transfer function. For the given transfer function find	(7)
		the poles and zeros and also draw the pole zero plot	
		$I(s) = 20(s+5)/(s^2+5s+6)$	
		PART C	
		Answer any two full questions, each carries 20 mark.	
7	a)	Two inductively coupled coils have self-inductance $L_1 = 50 \text{mH}$, $L_2 = 200 \text{mH}$.	(3)
		Given $k = 0.5$. Find the mutual inductance between the coil	
	b)	Two coupled coils have a coefficient of coupling k= 0.83. With coil1 open, a	(6)
		current of 5A flows in coil 2. Given flux in coil 2 is 0.35 milli weber. Find L_1,L_2	
		and M.	
	c)	A coil having an inductance and resistance of 50 mH and 100Ω is connected in	(6)
		series with a capacitor and a 100V, 1 kHz source. Find the value of capacitance	
		that will cause resonance in the circuit. Find the resulting current at resonance	
	d)	Define characteristic impedance and image impedance	(5)
8	a)	Explain Y parameters.	(6)
	b)	Derive the inter relation between open circuit impedance parameters and	(6)
		transmission parameters	
	c)	In a RLC series circuit, the resistance, inductance and capacitance are 10Ω ,	(8)
		100 mH and 10 μ F. Find ω_o , $\omega 1$ and ω_2 . Also find band width and selectivity	
9	a)	Explain parallel inter connection of two port networks	(6)
	b)	The h parameters of a two port network are $h_{11}=1.5~k\Omega,~h_{12}=2~x~10^{-3}$, $h_{21}=$	(7)
		250 and $h_{22} = 150 \times 10^{-6}$. Find Z parameters and draw its equivalent	
	c)	Explain Double tuned coupled coils	(7)
