Reg No.:__

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech degree examinations (S), September 2020

Course Code: CH308

Course Name: CHEMICAL REACTION ENGINEERING-II

Max. Marks: 100

Duration: 3 Hours

Marks

(9)

PART A

Answer any two full questions, each carries 15 marks.

- 1 a) Describe pulse and step input and their responses with suitable figures (6)
 - b) Form the response data for a pulse input of a reactor given below:

t, min	0	5	10	15	20	25	30	35
C _{out} , g/L	0	3	5	5	4	2	1	0

(i) Calculate the mean residence time.

(ii) Tabulate and construct the E curve and also calculate the area under the E curve.

- 2 With a figure briefly explain the basics concepts of tank in series model and derive an (15) expression for the model parameter 'number of tanks (n)'.
- 3 a) Calculate the mean conversion in a reactor for first order, liquid phase, irreversible (10) reaction in a completely segregated fluid: A→Products.

The reaction rate constant is 0.1 min^{-1} at 320 K.

t, min	0	1	2	3	4	5	6
C, g/m^3	0	1	5	8	10	8	6
t, min	7	8	9	10	12	14	
C, g/m^3	4	3	2.2	1.5	0.6	0	

b) Prove that for an ideal reactor the mean residence time is equal to the space time. (5)

PART B

Answer any two full questions, each carries 15 marks.

- a) With a neat diagram list the various steps involved in a reaction occurring in a (5) porous catalyst
 - b) Assume desorption step to be rate limiting and derive an expression for reaction (10) rate for the overall reaction A+B → C. Steps of the reaction are given below:
 Adsorption: A+S → AS and B+S → BS

4

Surface Reaction: $AS + BS \rightarrow CS + S$

Desorption: $CS \rightarrow C + S$

- 5 a) With help of figures differentiate between porous and supported catalysts (4)
 - b) Define overall effectiveness factor? Derive expression for overall effectiveness (8) factor
 - c) Briefly explain Mears Criterion for external diffusion.
- a) A catalytic reaction A→ 4B, is studied in a PFR using various amounts of catalyst (9) and 20 L/h pure A feed at 3.2 atm and 117 ⁰C. The concentration of A in the effluent stream is recorded as follows:

Experiment	1	2	3	4
Catalyst used (kg)	0.02	0.04	0.08	0.16
CA out (mol/L)	0.074	0.06	0.044	0.029

Deduce a rate expression for the reaction assuming 1st order reaction.

b) Derive expression for Internal effectiveness factor

(6)

(3)

PART C

Answer any two full questions, each carries 20 marks.

- a) A particle of radius R reacts with a gas and forms a stable non flaking product layer (10) on its surface. With a neat figure representing the problem, derive an expression for conversion of particle using the shrinking core model if chemical reaction controls the overall reaction.
 - b) Using suitable figures for irreversible reaction, reversible endothermic reaction and (10) reversible exothermic reactions explain the concept of optimum temperature progression.
 - a) With neat figure explain progressive conversion model. Give two examples. (5)
 - b) With a neat figure, derive the rate equation for mass transfer of gas A being (9) physically absorbed in to a liquid B.
 - c) Derive an expression for conversion for a non-adiabatic reaction from energy (6) balance. Draw a sketch of conversion vs temperature showing the shifting of adiabatic line due to heat exchange.
 - a) A batch of spherical solids of uniform size is treated by a gas in a constant (10) environment reactor. Solid is converted to for a firm non-flaking product according to shrinking core model. The conversion is 87.5% for a reaction time of 1 hour and reaction is 100% complete in 2 hours. Verify the data given for the three rate controlling mechanisms and infer on the findings.

9

8

03000CH308052002

- b) Determine the equilibrium conversion for a reversible first order reaction A → B (10) between 273K and 373 K.
 - At 298 K, $\Delta G^{o} = -14130$ J/mol, $\Delta H_{RT = 298} = -75300$ J/mol, $C_{PA} = C_{PB} = constant$
 - (i) Construct a plot between temperature and conversion
 - (ii) What temperature restriction should be placed on the reaction if operated isothermally to achieve a conversion of 75% or higher?
