В

Reg No.:	
----------	--

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fifth semester B.Tech degree examinations (S) September 2020

Course Code: EE303 Course Name: LINEAR CONTROL SYSTEMS

	Course Name: LINEAR CONTROL SYSTEMS		
Instructions: Graph sheets and semi log sheets are to be provided			
Max. M	Marks: 100 Duration: 3	Hours	
	PART A Answer all questions, each carries 5 marks.	Mark	
1	How do you analyse the performance of a mechanical system using electrical	(5)	
	analogy? Explain with suitable example for Force- Voltage analogy.		
2	With relevant characteristics, explain the applications of synchro transmitter and receiver units?	(5)	
3	The input to a closed loop system with open loop transfer function	(5)	
	$G(s) = \frac{K(s+3)}{s(s^2+3s+2)}$ consists of a step function and a ramp function as,		
	r(t)= 2 u(t) + t. Determine the value of K such that the steady state error for the		
	system is e_{ss} = 0.1. Determine the static error coefficients also.		
4	How do you determine the angle of departure of root locus branch from an open loop pole, using angle criterion.	(5)	
5	loop pole, using angle effection.	(5)	
3	Derive and explain the dependence of damping factor on the resonant peak (M_r) of a second order system?	(5)	
6	Explain the significance of gain cross over frequency and phase cross over	(5)	
	frequency in the system performance with suitable characteristics.		
7	State and explain Nyquist stability criterion?	(5)	
8	Obtain the polar plot and hence determine the value of K such that the system with open loop transfer function $G(s) = \frac{K}{s(s+1)(s+4)}$ is marginally	(5)	
	s (s+1)(s+4) stable?		

03000EE303092002

PART B

Answer any two full questions, each carries 10 marks.

- 9 a) Explain the Mason's gain formula for the derivation of transfer function with a suitable example. (5)
 - Analyse the effect of feedback block H(s) on the characteristic equation and pole-zero locations of the closed loop system having $G(s) = \frac{2}{(s^2 + 4s + 4)} \quad \text{with: i)} \ H(s) = \frac{1}{s} \ ; \quad \text{ii)} \ H(s) = s$
- Determine the unit step response for the system with transfer function $T(s) = \frac{1}{(s^2 + 4s + 5)}$. Also determine peak overshoot (M_p) and peak time (t_p) .
 - b) Explain the features and control applications of Tacho generators. (4)
- Derive the transfer function of the Field controlled DC servo motor and hence explain the system characteristics?
 - b) How does an automatic control system differ from an open loop system. (4)

 Mention at least four general control system components required for the modification?

PART C Answer any two full questions, each carries 10 marks.

Test the stability of the unity negative feedback system with $G(s) = \frac{16}{s(s^5 + s^4 + 8s^3 + 6s^2 + 20s + 8)}$ using Routh's stability

criterion. Hence identify the location of roots of the system.

- b) Explain how does the type of the system control the steady state error for a ramp input? (3)
- Determine the stability of the closed loop system with (10) $G(s)H(s) = \frac{K(s+1)}{(s^2+4s+8)}$ using Root locus plot. Hence, determine the

03000EE303092002

value of K such that the damping factor is 0.866.

- Determine the value of M using Routh array, such that the system with characteristic equation $q(s) = s^4 + s^3 + M s^2 + 2s + 1$ is stable.
 - b) With suitable illustrations explain how does addition of zeroes to the transfer function affect the root locus? (6)

PART D

Answer any two full questions, each carries 10 marks.

- Determine the value of K such that the system with open loop transfer function (10) $G(s)H(s) = \frac{K}{s(s+4)^2}$ is marginally stable, using Bode plot.
- Test the stability using Nyquist criterion, for the system with open loop transfer (7) function $G(s)H(s) = \frac{2}{s(s+2)(s+4)}$
 - b) Compare between non minimum phase systems and minimum phase systems? (3)
- With suitable characteristics explain the effects of Transportation lag (e^{-sT}) on (5) Bode plot
 - b) Explain the salient features and advantages of Nichols chart in Control system (5) design.
