B 03000CS304052001 Pages: 3

Reg No.:	Name:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech examinations (S), September 2020

	Course Code: CS304 Course Name: COMPILER DESIGN	
Max. N	Marks: 100 Duration: 3	Hours
	PART A Answer all questions, each carries 3 marks.	Marks
1	State the role of lexical analyzer. Identify the lexemes and their corresponding	(3)
	tokens in the following statement: printf ("Simple Interest=%f\n", si);	, ,
2	Explain any three tools that help a programmer in building a compiler	(3)
	efficiently.	
3	Eliminate the ambiguity from the given grammar	(3)
	$E \rightarrow E*E \mid E-E \mid E^*E \mid E/E \mid E+E \mid (E) \mid id.$	
	The associativity of the operators is as given below. The operators are listed in	
	the decreasing order of precedence.	
	(i) ()	
	(ii) / and + are right associative	
	(iii) ^ is left associative.	
	(iv) * and – are left associative	
4	For what type of grammar, recursive descent parser cannot be constructed?	(3)
	Show the steps involved in recursive descent parsing with backtracking for the	
	string cad with the given grammar: $S \rightarrow cAd$ $A \rightarrow ab \mid a$	
	PART B Answer any two full questions, each carries 9 marks.	
5 a)	Trace the output after each phase of the compiler for the assignment statement:	(6)
	$\mathbf{a} = \mathbf{b} + \mathbf{c} * 10$, if variables given are of float type.	
b)	Show that the following grammar is ambiguous.	(3)
	bexpr → bexpr OR bterm bterm	
	bterm → bterm AND bfactor bfactor	
	bfactor → NOT bfactor (bexpr) TRUE FALSE	

03000CS304052001

6	a)	Left factor the following grammar and then obtain LL(1) parsing table	(6)
		$E \rightarrow T+E \mid T$	
		$T \rightarrow \text{float} \mid \text{float} * T \mid (E)$	
	b)	What is the relevance of input buffering in lexical analysis?	(3)
7	a)	Write Non-recursive predictive parsing algorithm.	(5)
	b)	Write regular expressions for the following languages:	(4)
		i) All strings over the English alphabet that contain the five vowels in order.	
		ii) All strings of a's and b's that do not contain the subsequence abb.	
		PART C	
		Answer all questions, each carries 3 marks.	
8		What is handle pruning? Indicate the handles in the reduction of the right	(3)
		sentential form S S+ a * to the start symbol using the grammar below:	
		$S \rightarrow S S + S S * a$	
9		What are viable prefixes? For the given grammar S \rightarrow 0 S 1 0 1 write all the	(3)
		viable prefixes for the string 00001111	
10		Give the S-attributed SDD of a simple desk calculator and show annotated parse	(3)
		tree for the expression $(3+4)*(5+6)$.	
11		Write a translation scheme for performing type checking of statements.	(3)
		PART D	
12	a)	Answer any two full questions, each carries 9 marks. Construct canonical collection of LR(1) items for the following grammar:	(5)
		$S \rightarrow AA$	
		$A \rightarrow Aa \mid b$	
	b)	Differentiate between S-attributed and L-attributed definitions with suitable	(4)
		examples.	
13	a)	Write the SDD for a simple type declaration and draw the annotated parse tree	(5)
		for the declaration float a, b, c.	
	b)	Construct SLR parsing table for the grammar $A \rightarrow a \mid (A)$.	(4)
14	a)	Using operator precedence relations, parse the string id + (id * id).	(5)
	b)	Construct DAG for the expression (a/10 + (b -10))*(a/10 + (b-10)). Also write	(4)
		the sequence of instructions used for the DAG construction.	
		PART E	
		Answer any four full questions, each carries 10 marks.	

15 a) Using necessary figure, illustrate how the caller and callee cooperate in

(6)

03000CS304052001

managing various tasks in stack allocation strategy when a procedure is activated.

- b) Explain copy propagation with an example. (4)
- 16 a) Write SDD to produce three-address code for Boolean expressions and obtain (6) the three-address code for the statement given below:

while a < b doif c < d then x = y + zelse x = y - z

- b) Explain common sub expression elimination with an example. (4)
- 17 a) Identify any four issues in the design of a Code Generator. (6)
 - b) Write the three address code sequence for the statement x=y*z + y*-z. Also give (4) its triple representation.
- Write the code generation algorithm. Using this algorithm generate code (10) sequence for the expression $\mathbf{x} = (\mathbf{a} \mathbf{b}) + (\mathbf{a} + \mathbf{c})$.
- 19 a) With suitable example of a basic block, explain the code-improving (6) transformations of a basic block.
 - b) Describe the various fields in an activation record. (4)
- 20 a) Explain the 3 representations of three-address code statements. (6)
 - b) What is static allocation strategy? What are its limitations? (4)
