Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth semester B.Tech examinations (S), September 2020

		Course Code: CE206	
Ma	Course Name: FLUID MECHANICS II (CE) Max. Marks: 100 Duration: 3		3 Hours
		DA DEL A	
1	a)	PART A Answer any two full questions, each carries 15 marks. Find the type of the turbine which should be used under a head of 150 m to	Marks
		develop 1500 KW while running at 300 rpm, based on specific speed criteria.	
	b)	A jet of water strikes on a smooth stationary curved plate at the centre. Derive	(3)
		an equation for force exerted in the direction of the jet.	
	c)	A Kaplan turbine, operating under a head of 20 m develops 20000 KW with an	(9)
		overall efficiency of 66%. The speed ratio is 2 and flow ratio is 0.6. The hub	
		diameter of the wheel is 0.35 times the outer diameter of the wheel. Find the	
		diameter and speed of the turbine.	
2	a)	How priming is carried out in small and large centrifugal pumps? What is self-	(3)
		priming pump?	
	b)	A centrifugal pump delivers 0.04 m ³ /s of water to a height of 20 m through a	(3)
		15 cm diameter pipe which is 100 m long. Calculate the manometric head if the	
		coefficient of friction is 0.15.	
	c)	Derive an expression for specific speed of a centrifugal pump.	(9)
3	a)	Find the ratio of forces exerted by a jet of water in the direction of jet when it	(4)
		strikes normally	
		i) a smooth stationary flat plate	
		ii) a smooth flat plate moving in the direction of the jet at one half of the	
		velocity of the jet.	
	b)	Compare Kaplan turbine and Francis turbine.	(4)
	c)	A centrifugal pump is running at 1000 rpm. The outlet vane angle of the	(7)
		impeller is 45 ⁰ and velocity of flow at outlet is 2.5 m/s. The discharge through	
		the pump is 200 litres/s when the pump is working against a total head of 20m.	

02000CE206052001

If the manometric efficiency of the pump is 80%, determine the diameter of the

		impeller and the width of the impeller at the outlet.	
4	a)	PART B Answer any two full questions, each carries 15 marks. Differentiate between hydraulic radius and hydraulic depth.	(3)
	b)	A triangular channel has a side slope of 1.5 horizontal to 1 vertical and is laid	(3)
		on a longitudinal slope of 1 in 1650. Assuming Manning's coefficient as 0.013, estimate the normal depth required to pass a discharge of 0.3 m ³ /s.	
	c)	A trapezoidal section has side slopes of 1 vertical to 1 horizontal and has to carry a discharge of 14 m ³ /s. The bed slope of the channel is 1 in 1000. Chezy's constant is 45 if the channel is unlined and is 70 if the channel is lined with concrete. The cost per cubic meter of excavation is 3 times the cost per square metre of lining. The channel is to be the most efficient one. Find whether the lined canal or unlined canal will be cheaper.	(9)
5	a)	List out any three practical cases in which a hydraulic jump may occur.	(3)
	b)	Explain specific force curve.	(3)
	c)	A discharge of 18m ³ /s flows through a rectangular channel 6m wide at a depth	(9)
		of 1.6m. Find the specific energy and critical depth. State whether the flow is subcritical or supercritical. What is the alternate depth?	
6	a)	Show that the head loss in a hydraulic jump formed in a rectangular channel may be expressed as $\Delta E = \frac{(V_1 - V_2)^3}{2g(V_1 + V_2)}$	(8)
	b)	For maximum discharge in a circular channel section, prove that the depth of	(7)
		flow is 0.95 times the diameter of the channel.	
		PART C	
7	a)	Answer any two full questions, each carries 20 marks. What are the assumptions made for deriving dynamic equation for gradually	(5)
		varied flow?	
	b)	A rectangular channel 10 m wide carries a discharge of 10 m ³ /s. It is laid at a	(15)
		slope of 0.0001. If the depth of flow at a section is 1.6 m, how far (upstream or	
		downstream) will be the depth be 2 m? Manning's coefficient $N = 0.015$.	
8	a)	Distinguish between Reynolds number and Froude number.	(5)
	b)	What is distorted model? What are the merits and demerits?	(5)

c)

The efficiency η of a fan depends upon the kinematic viscosity of the fluid μ ,

the angular velocity ω , diameter D of the rotor and the discharge Q. Express η

(10)

02000CE206052001

in terms of dimensionless parameters using Buckingham π - theorem as $\eta = \phi \left[\frac{v}{\omega D^2}, \frac{Q}{\omega D^3} \right].$

- 9 a) Find the slope of free water surface in a rectangular channel of width 3 m and depth of flow 0.75 m. The discharge through the channel is 0.84 m³/s. The bed of the channel is having a slope of 0.15 m per km. Assume Chezy's constant, C as 55.
 - b) With a neat sketch explain the characteristics of water surface profile in critical (5) sloped channels.
 - c) A 1: 50 spillway model has a discharge of 1.25 m³/s. What is the corresponding (10) prototype discharge? If a flood phenomenon takes 12 hours to occur in the prototype, how long should it take in the model?
