Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S4 (S) Exam Sept 2020

Course Code: EE204

Course Name: DIGITAL ELECTRONICS AND LOGIC DESIGN (EE)						
Max. Marks: 100 Duration: 3 l			3 Hours			
		PART A Answer all questions, each carries 5 marks	Marks			
1		Convert	William			
	a)	(2469) ₁₀ in to BCD.	(1)			
	b)	$(735)_8$ to decimal.	(1)			
	c)	(650) ₁₀ to hexadecimal, gray and binary.	(3)			
2		Using Boolean algebra prove that $(A + B) (A'+C) = AC + A'B$.	(5)			
3		Design a full subtractor logic circuit.	(5)			
4		Explain SISO and SIPO shift registers.	(5)			
5		Draw the logic diagram and timing sequence of a 4-bit ring counter.	(5)			
6		Prepare the state table and derive the logic expression for each flip flop input for	(5)			
		a 3-bit binary synchronous down counter using T flip flop?				
7		Explain the working of R-2R ladder type DAC.	(5)			
8		Compare PAL and PLA.	(5)			
PART B						
9	a)	Answer any two questions, each carries 10 marks Given $X=38_{10}$ and $Y=105_{10}$. Using 2's complement method				
		calculate (i) X-Y (ii) Y-X	(5)			
	b)	How is the error detection and correction carried out using parity method in	l			
		digital data transmission?	(5)			
10	a)	Using K map, minimize the expression				
		$F(A,B,C,D) = \sum m(1,2,3,8,14,15) + d(0,4,6,10).$	(5)			
	b)	Realize the Boolean expression Z=ABC + AD + CD' using NAND gates only.	(5)			
11	a)	Explain a CMOS NAND gate .	(5)			
	b)	Find the standard Product of Sum (POS) for the logic expression				
		F=(A+B'C)C	(5)			

02000EE204052003

PART C

		Answer any two questions, each carries 10 marks		
12		Develop a 3-stage carry look ahead adder and implement using basic gates. (
13		Realize the following function $F(A,B,C,D) = \sum m(1,3,4,10,11,12,13)$ using		
		(i) 4 X 1 MUX (ii) 8 X 1 MUX	(10)	
14	a)	Explain a 3 bit asynchronous up counter. Draw the timing diagram and truth		
		table.	(5)	
	b)	Draw the logic diagram of J-K flip flop and explain it. What is the advantage of		
		J-K flip flop over S-R flip flop.	(5)	
		PART D		
		Answer any two questions, each carries 10 marks		
15		Design a 3-bit gray code synchronous counter using J-K flip flop and explain		
		the steps in detail.	(10)	
16	a)	Compare Mealy and Moore state machine models with example.	(5)	
	b)	Differentiate between ROM and RAM.	(5)	
17	a)	Implement a full adder circuit using VHDL	(5)	
	b)	Explain the working of successive approximation ADC. Mention the advantages		
		and disadvantages.	(5)	
