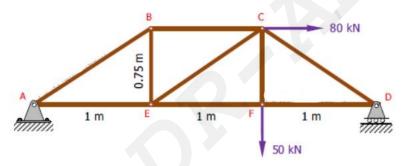
Pages: 4

Reg No.:_

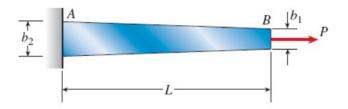
Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

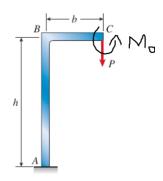
Fourth semester B.Tech examinations (S), September 2020


Course Code: AO204 Course Name: AIRCRAFT STRUCTURES-I (AN)

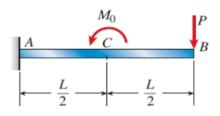
Max. Marks: 100


Duration: 3 Hours

PART A Answer any three full questions. Each question carries 10 marks.


1 Determine forces in the member CF, FC, CD and FD using method of joints. 10

- 2 Derive Clapeyron's 3 moment equation for a continues beam with constant 10 flexural rigidity.
- 3 a) Explain strain energy density due to axial loading using stress-stain diagram. 3
 - b) A slightly tapered bar AB of rectangular cross section and length L is acted upon 7 by an axial force P (see figure). The width of the bar varies uniformly from b_2 at end A to b_1 at end B. The thickness t is constant. Find the strain energy of the bar.



4 The frame *ABC* supports a concentrated load *P* at point *C*. Members *AB* and *BC* 10 have lengths *h* and *b*, respectively. Determine the vertical deflection and angle of rotation of the frame. (Use base form or modified form as convenient)

PART B Answer any three full questions. Each question carries 10 marks.

A cantilever beam *ACB* supports two concentrated loads *P* and M_0 as shown in the 10 figure.

5

Calculate deflection at point C and angle of rotation at point B using dummy load method.

6	a)	What is Maxwell's reciprocal deflection theory, explain with example.						
	b)	b) What is Betti's law theory, explain with example.						
7	a)	Derive an expression for maximum compressive stress acting on a beam column						
	which is pinned at both ends.							
	b)	Draw the Euler's curve of a beam column for different eccentric ratio	3					
8	a)	Explain how inelastic buckling is differ from elastic buckling?	3					
	b)	Explain tangent modulus theory of inelastic buckling using Euler's curve.	5					
	c)	Explain why Initial curvature leads to an eccentric effect to the column.	2					
PART C								
Answer any four full questions. Each question carries 10 marks.								
9	a)	a) Explain maximum distortion energy theory?						
	b)	Derive failure criteria according to maximum distortion energy theory.	6					
	c)	Draw the failure surface of maximum distortion energy theory	2					
10		The state of stress at critical point of a prismatic circular bar in rectangular	10					
		coordinate system is given below.						

02000AO204052001

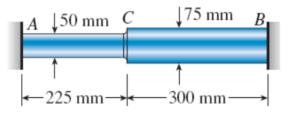
[30	10	0]	
30 10	20	0	МРа
0	0	10	

Material properties are: yield stress in tension = 200MPa, Ultimate stress in tension = 310 MPa and poisons ratio = 0.3.

I. Find principle stresses.

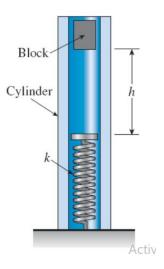
11

- II. Find factor safety according to maximum shear stress criterion.
- III. Find factor of safety according maximum distortion energy theory.



10

Figure shows a prismatic circular bar subjected to eccentric axial load of 10 kN with eccentricity e = 10 mm from axis of the bar. Find diameter of the bar using Maximum principle stress theory.


Material properties are: Yield stress in tension = 235 MPa and Ultimate tensile strength = 300 MPa. Factor of safety = 3.5.

12 A plastic bar *ACB* having two different solid circular cross sections is held 10 between rigid supports as shown in the figure. The diameters in the left- and right-hand parts are 50 mm and 75 mm, respectively. The corresponding lengths are 225 mm and 300 mm. Also, the modulus of elasticity *E* is 6.0 GPa, and the coefficient of thermal expansion is 100 x 10^{-6} /°C. The bar is subjected to a uniform temperature increase of 30° C.

Calculate:

- 1. Maximum compressive stress
- 2. Displacement of point C
- 13 A block weighing W = 5.0 N drops inside a cylinder from a height h = 200 mm 10 onto a spring having stiffness k = 90 N/m

- I. Determine the impact factor.
- II. Determine the maximum shortening of the spring due to the impact
- 14 a) A circular rod of length L and cross section area A is attached to spring having 5 stiffness K as shown in the figure.

Let E is the young's modulus and α be the coefficient of thermal expansion of the rod. If the bar subjected to temperature increase of ΔT , determine the expression for thermal stress developed on the cross section.

b) What is endurance limit? Explain the failure mechanism of components under 5 fatigue loading.