Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth semester B.Tech examinations (S), September 2020

Course Code: CH202 Course Name: PROCESS HEAT TRANSFER (CH)

Max. Marks: 100

Duration: 3 Hours

9

6

2

PART A

Answer any two questions. Each question carries 15 marks.

- a) Derive the expression for temperature distribution in a hollow cylinder without 1 internal energy generation. Also obtain the expression for heat flux. State your assumptions properly.
 - b) Explain the significance of Biot and Fourier Numbers.
- An aluminium sphere of weight 2.5 kg is initially kept at a temperature of 350 ^oC. It 9 2 a) is suddenly immersed into a fluid kept at 20 ° C. The convective heat transfer coefficient is 58 W/m²K. Estimate the time required to cool the sphere to 100 ⁰C using lumped capacity analysis method. Given density of aluminium = 2700 kg/m^3 , specific heat = 900 J/kgK, thermal conductivity = 205 W/mK.
 - b) Describe different types of boundary conditions applied to heat conduction 6 problems.
- 5 3 a) What is meant by thermal resistance? Explain the electrical analogy for solving heat transfer problems.
 - b) Derive the expression for critical thickness of insulation for a cylindrical system. 8 Explain optimum thickness of insulation.
 - State Fourier's law of heat conduction c)

PART B

Answer any two questions. Each question carries 15 marks

- a) Develop the expression for Reynold's analogy between momentum and heat 4 15 transfer. State the expression for Colburn analogy.
- a) Describe the basic construction of a shell and tube heat exchanger with a neat 15 5 diagram.
- 6 a) Air at a temperature of 300 0 C flows with a velocity of 10 m/s over a flat plate of 7 length 0.5 m. Compute the cooling rate per unit width of the plate needed to maintain it at a surface temperature of 27 ⁰C. (Given properties of air at 437 K are

Pages: 2

02000CH202052001

kinematic viscosity = $5.21 \times 10^{-4} \text{ m}^2/\text{s}$, thermal conductivity = 0.0364 W/m K, Pr = 0.686, Specific heat = 1.021 kJ/kg K).

b) A grey surface is maintained at a temperature of 827 0 C. If the maximum spectral 8 emissive power at that temperature is 1.37×10^{10} W/m², determine the emissivity of the body and the wavelength corresponding to the maximum spectral intensity of radiation.

PART C

Answer any two questions. Each question carries 20 marks.

7	a)	List out the types of evaporators. Briefly describe the construction and operation of	20
		the long tube vertical evaporator and the plate type evaporator.	
8	a)	Distinguish between dropwise and film wise condensation.	6
	b)	Write down the Rohsenow correlation and Zuber correlation for pool boiling.	8
9	c)	Briefly describe the factors affecting condensation.	6
	a	Briefly describe various types of fins.	8
	b)	Define fin efficiency and effectiveness.	8

c) Write down the Nusselt equation for determination of condensation heat transfer 4 coefficient.