_										
Reg No.:				Name:						
SIXTH				AM TECHNOL REE COMREHENSI						
				Course Code: E						
Max. Mark	cs: 50		se n	ame: COMPREH	ENS	SIVE EXAM		Duration: 1Hour		
Instructions:	•	(2) Total number of quality (3) All questions are to which only ONE is co.	uestic o be c rrect. ption	inswered. Each question is chosen, it will not be	will b	e followed by 4 possib	le ansı	vers of		
1.	The	sum of the series \sum	k=0	$\left(\frac{1}{3}\right)^k$ is						
	a)	1	b)	<u>2</u>	c)	1	d)	1		
2.	a) $\frac{1}{3}$ b) $\frac{2}{3}$ c) $\frac{1}{2}$ d) 1 The solution of the differential equation $y'' - 4y' + 4y = 0$ is									
	a)	$y = (A + Bx)e^{2x}$	b)	$y = (A + Bx)e^{-2x}$	c)	$y = (A + Bx)e^x$	d)	$y = (A + Bx)e^{-x}$		
3.		resultant of two eq ween the two forces		forces has the same m	agni	tude as either of the	e forc	es, then the angle		
	a)	120 ⁰	b)	30 ⁰	c)	90°	d)	60°		
4.	Two bodies of masses m_1 and m_2 are dropped from the top of a tower of same height. When these bodies reach the ground, their kinetic energies will be in the ratio									
	a)	1:2	b)	1: √2	c)	1: 4	d)	1:1		
5.	The top view of a pentagonal prism with axis perpendicular to the vertical plane and parallel to horizontal plane will be a									
	a)	Pentagon	b)	Rectangle	c)	Trapezoid	d)	Straight line		
6.	In perspective projection the object is assumed to be kept on which of these planes.									
	a)	Picture plane	b)	Horizon plane	c)	Ground plane	d)	Central plane		
7.	Which is the most abundant element available in the atmosphere?									
	a)	Oxygen	b)	Nitrogen	c)	Argon	d)	Carbon di oxide		
8.	The total amount of greenhouse gases produced to directly and indirectly support human activities, usually expressed in equivalent tons of carbon dioxide									
	a)	Carbon Dating	b)	Carbon Trading	c)	Carbon Footprint	d)	Carbon Factor		
9.		e of the pins in a 3 pi 'X', where 'X' is	in pl	ug top is bigger than	the r	est. This is most clo	osely	related to design		

c) Life cycle Cost

d) Environment

b) Manufacturing

Assembly

10.	Which of the following can be most appropriately associated with the design space of a ball?									
	a)	Speed	b)	Velocity	c)	Diameter	d)	Height		
				PART B- COR	E C	OURSES				
11.	A voltage source has 10 V across its terminals when no load is connected. With a load current of 2 A, the voltage across the terminals of the source drops to 9.5 V. What is the value of the internal resistance of the voltage source?									
	a)	0.25Ω	b)	5 Ω	c)	$4.75~\Omega$	d)	0.5 Ω		
12.	The value of source resistance of a voltage source of 10 V is 100Ω . What is the value of maximum power that can be transferred to a load resistor which is connected to this source?									
	a)	10 W	b)	0.25 W	c)	1 W	d)	0.5 W		
13.	A current pulse $5\delta(t)$ is forced through a capacitor C. The voltage $V_c(t)$ across the capacitor is given by									
	a)	5t	b)	5u(t) - C	c)	5t/C	d)	5u(t)/C		
14.	At poles, the Network function N(s) becomes									
	a)	zero	b)	One	c)	Oscillatory	d)	Infinity		
15.	Which among the following represents the condition for reciprocity of a network in terms of transmission parameters?									
	a)	AB - CD = 1	b)	AD - BC = 1	c)	A = D	d)	AC - BD = 1		
16. Two coupled coils connected in series have an equivalent inductance of 2 depending on the interconnection. Then the mutual inductance M between										
	a)	12mH	b)	8mH	c)	4mH	d)	2mH		
17.		Which among the following gets cancelled under the resonance condition in ac circuits, if inductive and capacitive reactances are in parallel?								
	a)	Reactance	b)	Susceptance	c)	Resistance	d)	None of these		
18.	The system described by the relationship, $y[n]=2^{n}x[n]$ is									
	a)	Always unstable	b)	Some times unstable	c)	stable	d)	Not able to predict about stability		
19.	When two systems are connected in parallel, the overall impulse response is									
	a)	$h_1[n]*h_2[n]$	b)	$h_1[n].h_2[n]$	c)	$h_1[n]+h_2[n]$	d)	$h_1[n]-h_2[n]$		
20.	The spectrum of periodic impulse train is									
	a)	Unit step	b)	Constant value	c)	Periodic impulse train	d)	Periodic sine and cosine signals		
21.	When a signal is sampled, its spectrum									
	a)	Is also sampled	b)	Becomes periodic	c)	oscillates	d)	Remains the same		
22.	If the DTFT of $x[n]$ is $X(\omega)$, then the DTFT of $e^{j\omega 0n}x[n]$ is,									

 $a) \quad e^{j\omega 0\omega}X(\omega) \qquad \qquad b) \quad e^{-j\omega 0\omega}X(\omega) \qquad \qquad c) \quad X(\omega-\omega 0) \qquad \qquad d) \quad X(\omega+\omega 0)$

23.	For	For an LTI system the Z transform is given as (where a=0.5), $H(z) = \frac{1}{1 - az^{-1}}$									
	a)	Is always stable	b)	Is always stable and causal	c)	Is always stable but not causal	d)	Cannot be predicted			
24.	$\delta(t)$	$\delta(t)$ *u(t) , where * denotes the convolution operation is									
	a)	u(t)	b)	$\delta(t)$	c)	x(t)	d)	0			
25.	The	The ideal value for the stability factor is									
	a)	0	(b)	More than 100	c)	Infinite	d)	1			
26.		configuration is used as a buffer amplifier									
	a)	Common base	(b)	Common	c)	Common	(d)	None of the			
				Collector		Emitter		above			
27.	A c	A change in frequency by a factor of is equivalent to 1 octave.									
	a)	2	(b)	10	c)	5	(d)	20			
28.	In c	In order to start oscillations, a feedback oscillator requires									
	a)	negative	(b)	positive feedback	c)	Gain equal to 1.	(d)	no feedback.			
		feedback with		with gain greater							
		gain less than 1.		than 1.							
29.	The	The conversion efficiency of Class B Push pull amplifiers is approximately									
	a)	94.5%	(b)	68.3%	c)	48.5%	(d)	78.5%			
30.	Wh	What is the input resistance $(R_{in(source)})$ of a common-gate amplifier?									
	a)	R_s	b)	$(1/g_m) R_s$	c)	$1/g_{\rm m}$	d)	None of the above			
31.	Cas	Cascode amplifiers are									
32.	a) A c	RC coupled amplifiers apacitor stores 0.24	(b)	CB-CE configuration ombs at 10 volts. Its c	c) capac	CE-CB configuration citance is	(d)	CE-CC configuration			
	a)	0.024F		0.24F	•	2.4F	(d)	240nF			
33.	What is the major factor for determining whether a medium is free space, a lossless dielectric, lossy dielectric or good conductor?										
	a)	Attenuation	(b)	Phase factor	c)	Reflection	(d)	Loss tangent			
		constant				Coefficient					
34.	The	The power in an electromagnetic wave with electric field and magnetic field intensities 12 and 8									
	resp	respectively is									
	a)	96	(b)	9.6	c)	24	(d)	48			
35.	Fin	Find the reflection coefficient of the wave with SWR of 3.5.									
	a)	0.55	(b)	5.5	c)	0.23	d)	1.5			

47. What is the standard IF frequency for AM receivers?
a) 100 KHz (b) 1.07 MHz c) 455 KHz (d) 10.7 MHz
48. A balanced modulator produces
a) SSB (b) DSB-FC c) AM (d) DSB-SC
49. In a superheterodyne receiver, if F_s and F_i are the RF signal frequency and intermediate

frequency respectively, the image frequency is given by

a) F_s+F_i

(b) F_s-F_i

c) F_s+2F_i

(d) F_s-2F_i

50. Pre-emphasis is done

a) Before modulation

(b) Before transmission

c) Before detection at receiver

(d) After detection at receiver
